Product Description Prepared for NSCL

DEBROS
Davis Embedded Basic Real-Time OS

A Linux/Unix-like OS for Rabbit-based computers/controllers

Developer and User Manual

(This manual is a work in progress)

Prepared By:

Mark Davis

National Superconducting Cyclotron Laboratory

Michigan State University
Original version: July 22, 2009

Last modified: February 28, 2013
Overview:

DEBROS is a small Real Time Operating System for use on Rabbit Core Modules. It provides a very usable subset of standard Linux/Unix commands and system calls that will be familiar to any programmer that has written C code for Linux or Unix.

The DEBROS code was written almost entirely in C using the Softools (www.softools.com) compiler and libraries. It contains portions of sample code from SHDesigns (www.shdesigns.org) as well as some modified versions of standard Linux header files.

The current implementation also assumes use of the SHDesigns download manager and the very basic flash file system that it provides.

Copyright © 2007-2013, NSCL (www.nscl.msu.edu) and Mark Davis (davism50@msu.edu)

TABLE of CONTENTS
61.0
Introduction

1.1
What is DEBROS?
6
1.2
Does DEBROS make sense for me?
6
1.3
Requirements for DEBROS
8
2.0
Overview of operation
10
2.1
Setup
10
2.2
Startup
10
3.0
Loading the firmware
12
3.1
Installing the Resident Download Manager (aka the boot-loader)
12
3.2
Downloading an application boot image file (first time)
14
3.3
Updating boot image files
16
4.0
Overview of the DEBROS platform and tools
17
4.1
Running from RAM vs running from flash
17
4.2
The Download Manager and boot-loader
18
4.3
The Simple Remote File Server (SRFS)
19
4.4
Primary and backup boot image files
19
4.5
Persistent values
20
4.6
Managing multiple devices
21
Device IDs and calibrations
21
Automatic Discovery and Configuration
24
The Device Manager
25
4.7
Modbus interface
26
4.8
System log
27
4.9
Network configuration
28
4.10
Floating point: speed vs accuracy
28
5.0
Doing development in the DEBROS environment
29
5.1
Modifcations to Softools source
29
5.2
xxx
30
5.3
Application code model
31
5.4
Tips
32
6.0
The DEBROS code
33
6.1
The kernel and scheduler
33
6.2
Drivers
33
6.3
Hardware support
34
6.4
Clients and daemons
34
6.5
User commands
34
6.6
Applications
34
6.7
Configurable limits
34
7.0
DEBROS in detail
35
7.1
xxxxxx
35
7.2
Memory Map
36
8.0
User Commands and the command shell
38
8.1
The command shell
38
8.2
DEBROS versions of common Linux/Unix commands
39
8.3
DEBROS-specific commands common to all applications
62
9.0
System calls
98
9.1
fcntl, ioctl, stat, unistd, utime, wait functions
98
9.2
stdio functions
112
9.3
socket library functions
114
9.4
time functions
128
9.5
resource functions
131
9.6
signal functions
132
9.7
semaphore functions
136
Appendix A: Diagnostic/Programming cable/box
143
Appendix B: Automatic Configuration, Backups, and Restores
145
Overview of components
145
The Process
148
Appendix C: Device Manager
152
Appendix D: Programming and the Rabbit memory model
153
D.1
Rabbit memory model
153
D.2
Memory model used by DEBROS
154
D.3
Near, far, and nearcall functions
155
Appendix E: To-do lists
159
E.1
Known bugs/issues
159
E.2
Unfinished functionality
159
E.3
Planned improvements, wish-list
159

1.0
Introduction

1.1 What is DEBROS?

DEBROS stands for Davis Embedded Basic Real-Time Operating System. It is a preemptive, priority-based multi-tasking operating system that provides limited real-time scheduling capability. It is written almost entirely in C and is designed to be compatible with Linux and Unix in terms of the basic system I/O calls and user-level commands.

1.2 Does DEBROS make sense for me?

DEBROS is intended to provide a development platform that will be familiar and comfortable to anyone that has done C programming for Linux or Unix systems. It provides a subset of the standard system calls and commands necessary for basic programming and development.

Because DEBROS is largely compatible with Unix and Linux, developers familiar with these operating systems can skip much of the learning curve often required with other embedded programming environments.

But of course you can’t get something for nothing. While the Rabbit Core Modules provide a lot of flexibility for a low cost, the Rabbit processors are still basically 8-bit processors running at relatively low clock rates. There are just so many CPU cycles to go around. Running a preemptive, priority-based, multitasking operating system designed to be compatible with Linux on such a platform comes at the cost of a significant chunk of the available CPU cycles.

If your applications require precise timing and efficient use of every CPU cycle, then you are much better off with a low-overhead, highly-efficient product like Softool’s TurboTask micro-kernel. Another possibility is the uC/OS-II or uC/OS-III RTOS from Micrium. I have experimented quite a bit with TurboTask and believe it lives up to its promises. And while I haven’t used uC/OS myself, Rabbit Inc. refers to it on their product pages, so I assume it also works reasonably well on Rabbits.

In terms of the kernel, both of these commercial solutions provide capabilities similar to or, in some cases, exceeding what DEBROS currently provides. If the efficiency and robustness of the kernel are your primary concerns, then DEBROS may not fit your needs.

But a fast, efficient kernel isn’t everything. Once you have your application written, how will you test it? How will you monitor the overall performance, and the performance of each of the tasks running on you device? Will you have to write more code to support interfaces and commands to let you do all this, and more?

Suppose instead of having to write a bunch of code to support the process of testing and monitoring your applications you could start with a platform that already supported all the following:

· An inetd daemon to monitor a set of ports and launch a new task in response to a connection request on a UDP or TCP port

· Multiple command shell connections (for both TCP and serial port connections)

· Use the diagnostic/programming port on the Rabbit Core Module as a serial console

· Standard Linux/Unix commands *:

arp, cat, cp, date, df, dir, exit, free, fsck, getty, grep, hostname, ifconfig, inetd, kill, ls, lsof, more, mv, netstat, od, ps, renice, rm, sh, shutdown, stat, tip, top, unlink, uname

· Standard Linux/Unix system calls (provided by DEBROS) *:

asctime_r, accept, bind, close, connect, ctime, ctime_r, dup2, fcntl, fflush, gethostname, getpriority, getsockopt, gettimeofday, gmtime_r, inet_ntop, inet_pton, ioctl, isatty, kill, listen, localtime_r, lseek, mkfifo, open, perror, pipe, read, recv, recfrom, rename, sem_close, sem_destroy, sem_getvalue, sem_init, sem_open, sem_post, sem_unlink, sem_wait, sem_trywait, sem_timedwait, send, sendto, SetHostName, setpriority, setsockopt, settimeofday, sigaction, signal, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember, sigaction, sigprocmask, sigpending, sigsuspend, socket, stat, stime, time, unlink, utime, waitpid, write

· Standard Linux/Unix system calls (provided by Softools) *:

asctime, ctime, difftime, gmtime, localtime, mktime, printf, sethostname, time

· A simple remote file system for accessing files over a TCP connection

· A continually backed up system log that any task can write to (concurrently)

· The ability to discover and configure devices over the network

· A generic driver API to support the Unix concept of “everything is a ‘file’”, allowing you to access devices using stdio file-descriptor based calls (open, close, read, write, ioctl, etc)

· Ability to define “persistent” variables whose values are saved to a local file and automatically backed up to a remote file

· Ability to periodically capture and save to a buffer the state of a group of variables and make the data available to a remote client (in my case, I use a “chart recorder” application to display the values as a waveform in near real-time)

· View and/or modify specially defined variables at run time

· Standard API for standard hardware-specific functions including:

· Reading from and writing to digital and analog I/O connections

· Commands to calibrate a gain and offset value for each analog input and output

· Hardware-specific initialization during startup

· Update the primary or backup boot image/firmware file while the currently loaded image is running (i.e. no affect on the currently running tasks until you manually reboot)

* Of course, not all the options for the commands and system calls listed above are supported. There IS a limit to how much you can do in 512K and still leave room for a useful application. But the basics are there, and the parameters to all the calls are the same as on a Linux system. For details on what options are supported, see the chapters on user commands and system calls.

Another consideration in my motivation for taking this approach was portability. The number of vendors offering Single Board Computers for around $100 and the capability of those boards keeps growing. But one thing seems almost universal these days: Almost every vendor supports some form of Linux.

So, aside from the laundry-list of features listed above, here is what DEBROS can provide:

· A comfortable, familiar environment to those already familiar with Linux and Unix, making Rabbit modules more useful and inviting to a larger audience

· Reduced learning curve for new Rabbit users

· Many of the benefits of a true preemptive, priority based multitasking OS

· Improved ROI for a programmer’s time by making use of their existing experience with Linux/Unix and providing the ability to write portable code that is not dependent on a vendor-specific API

· Reduce effort needed to port open-source code for use on Rabbit modules

1.3 Requirements for DEBROS

To the best of my knowledge, there are currently only two options for compiling C code for the Rabbit processors: Dynamic-C® from Rabbit Inc. (www.rabbit.com), and Rabbit-C from Softools, Inc (www.softools.com) which is part of the WinIDE package.

Unless things have drastically changed since I last used it regularly (about July 2007), the Dynamic-C® compiler from Rabbit Inc. is NOT a conventional compiler. It does not produce object files containing relocatable code or provide a linker to combine them in to reusable libraries. And it is not ANSI compliant (the vendor now states it is ANSI “compatible”).
The Softools WinIDE package is a much more conventional (and flexible) set of tools. The compiler supports ANSI standards. Source code is organized in the traditional .c and .h files. The compiler produces object files and a linker is used to produce reusable library files or a loadable binary image. It provides multiple levels of support for in-line assembler code, even allowing you to do so without disabling optimization. Most of the library functions are reentrant. And it provides the means to redirect the output of stdio functions like printf.

Overall, the Softools suite of applications and libraries provide much more flexibility and control over your code than is possible using the Dynamic-C® tools.

So you probably won’t be surprised that DEBROS was written using the Softools compiler and tools. I fact, I doubt very much that it would be possible to accomplish what I did without the Softools compiler and libraries.

In addition to use of the Softools development tools, DEBROS also assumes the use of the SHDesigns (www.shdesignes.org) Resident Download Manager (RDLM). This is a small application loaded in to flash that provides several capabilities including the following:

· A small, simple, flash-memory based file system that can store up to 12 files

· Discovery and configuration of modules via UDP connections

· Download and store one or two bootable binary image files

· Boot from a compressed binary image file

· Access the flash-based file system from your application code

In effect, the RDLM is a combination bootloader and network file server.

While it is possible to modify DEBROS so it will function without the flash file system, unless it was replaced with something equivalent, you would lose a considerable amount of functionality in the process. Unless someone wants to write a replacement for it, I would strongly urge you to simply purchase and use the one from SHDesigns.

And last, but not least, you will need a computer running Windows XP or later to run the compiler and other software to do setup, development, and maintenance.

2.0
Overview of operation
The following is meant as an overview only. For detailed step-by-step directions, consult the appropriate Appendix for each of these operations.

2.1
Setup

As stated in Chapter 1, the current implementation of DEBROS assumes the use of SHDesign’s Resident Download Manager (see www.shdesigns.org/rabbit/resident.shtml for details). The RDLM is a small application stored at the beginning of flash memory. It uses most of the remainder of flash as a simple flat file system that handles up to 12 files. Two of those files are generally used to store compressed copies of a loadable binary image that contains your application. Two copies are supported so you can have a primary and backup version, the backup version being loaded if the primary one fails to initialize properly.

The RDLM image can be loaded on to a Rabbit Core Module using the Rabbit Field Utility (RFU) from Rabbit Inc ®. It should also be possible using the FlashIt utility from Softools, but I don’t have a copy so I have not tested it.

Once you have successfully downloaded a copy of the RDLM to your Rabbit Core Module, you no longer need to use the Rabbit Field Utility or FlashIt with that module. Unless your application code somehow overwrites a portion of the flash the RDLM is stored in, it will run each time the board is reset or rebooted.

The next step is to download a copy of your code. The first time you do this you must use the Download Manager application from SHDesigns. It communicates with the RDLM via a UDP connection and allows you access the RDLM’s flash file system. Once you have a working copy of a DEBROS-based application running on the board, you can use DEBROS commands issued from a command shell to update the files containing your application image, even while the current image is running. You can then reboot it whenever it is convenient, causing the new image to be loaded and run.

2.2
Startup

When the RDLM runs at startup, it checks its file system to see if there is a file marked as the primary boot image. If so, the RDLM reads the file, decompressing and copying it in to RAM as it does so. It also computes a checksum as it is doing this. If there are no errors while loading the image in to RAM, and the checksum agrees with the one stored in the file, it sets a flag in flash memory indicating that it loaded the primary image and is about to execute it. It then transfers control to the image it just loaded and your application code begins to run.

One of the things your application code needs to do early on is to call a function provided by SHDesigns to inform the RDLM that everything appears to be OK. What this function does is change the state of the flag stored in flash. If you don’t call this function, the next time the RDLM runs it will see that the flag was not changed and it will assume that your primary boot image failed and crashed. In this case, the RDLM will attempt to load the backup copy instead.

If there is no backup copy, or the backup copy is loaded but also fails to call the function to update the flag, the next time the RDLM runs it will assume both image files contain code that crashed during initialization and it will not load either image. Instead the RDLM will continue to run itself, waiting either for a command from the console port to try again, or a request for a UDP connection from the Download Manager.

Note that both the RDLM and DEBROS use serial port A (the programming/diagnostic port) as a serial console. The RDLM displays messages on it during the boot process and allows the user to abort the process or manually initiate the boot process. By default, DEBROS copies new system log entries to the console unless someone initiates a command shell by sending a carriage return.

3.0
Loading the firmware
To get a DEBROS-based application running on a new Rabbit module requires that you load two pieces of firmware. The first is the Resident Download Manager (RDLM) from SHDesigns (see www.shdesigns.org/rabbit/resident.shtml for details). The second is the boot image that contains DEBROS and the application.

Before attempting to make any changes to the code, it is highly recommended that you familiarize yourself with and test the following process using the boot image for the basic “Starter” application. By doing so you will insure that you have the necessary tools and skills to load your own customized code later on, and that you have a Rabbit module that is compatible with DEBROS and the RDLM.

3.1
Installing the Resident Download Manager (aka the boot-loader)

The Resident Download Manager (RDLM) from SHDesigns is a small program stored at the beginning of flash that acts as a bootloader (see www.shdesigns.org/rabbit/resident.shtml for details). It uses most of the remainder of flash as a simple flat file system that supports up to 12 files. Two of those files are generally used to store compressed copies of a loadable binary image that contains your application. Two copies are supported so you can have a primary and backup version, the backup version being loaded if the primary one fails to initialize properly.

Loading the RDLM on to a Rabbit module is normally only done once. It provides the means for the initial downloading of a boot image file containing DEBROS and the application code, and serves as a boot-loader to load the boot image file in to memory and run it. Once the RDLM has been downloaded to a Rabbit module, it should remain in flash unchanged. It does not need to be loaded again unless something corrupts the portion of flash it is in or you wish to load a different version of the RDLM.

The first step in loading the RDLM is to connect the Rabbit Core Module (RCM) to your computer via a special serial cable. The RCM contains a 10-pin header that provides a TTL-level connection to serial port A within the Rabbit processor, as well as the necessary control signals to do a “boot-strap” load of code in to the memory on the RCM (see the manuals for your Rabbit processor and RCM for details on how this works: http://www.rabbit.com/docs/).

Connecting your PC to the RCM requires a special cable to convert between the RS-232 level signals on your PC’s serial port and the TTL-level signals on the Rabbit Core Module. These cables can be purchased from Rabbit (http://www.rabbit.com/products/Peripherals/). I strongly recommend modifying one of these as described in Appendix A.

Plug the connector labeled PROG to the 10-pin header on the RCM. Make sure you orient it so that pin 1 (the wire with the red stripe) is closest to the corner of the module. If you are using a modified cable-box as described in Appendix A, set the PROG/DIAG switch to the PROG position and press the RESET button.

NOTES for NSCL staff:

· If you are setting up a new controller which includes the externally accessible 9-pin female D-Sub PROG/DIAG connector, connect the 9-pin male plug on the modified PROG/DIAG cable-box to the 9-bin socket on the device. If your cable has multiple 9-pin plugs, be sure you use one that is on the same cable that the 10-pin connectors are on. Do NOT use one that is on the cable that goes from the box to the PC!

· The applications and files mentioned for this process are available at:
 \\exp\files\control\ctldev\Source\Embedded\Rabbit_ST\setup_tools

Using the Rabbit Field Utility (RFU.exe, from Rabbit, Inc ®), download the appropriate version of the SHDesigns Resident Download Manager. We have been using the DLM-III-D.bin version on both the RCM2200 and the RCM3200. As of this writing, these are the only two Rabbit modules we have used, so I do not know if this version will work on all Rabbit 2000 and Rabbit 3000 based modules.

The first time you run the RFU you will need to use the Communications and File locations dialogs under the Setup menu to configure it. Specify the coldload.bin file for the Cold Loader, pilot.bin for the Pilot BIOS, and flash.ini for the Flash Table. For the Communications options, I use 38400 for the baud rate and turn on the “Enable Processor Detection” option.

Once you have successfully downloaded the DLM file, exit the Rabbit Field Utility.

Start your favorite terminal emulator (the Windows HyperTerm application will do) and configure the connection for 115200 baud, 8 data bits, no parity, 1 stop bit.

If using a modified cable-box as described in Appendix A, set the DIAG/PROG switch on the adapter box to DIAG position. Otherwise pull the PROG connector off of the module and reconnect it using the DIAG connector.

Reset the module (press the RESET button if you are using the modified cable-box, or power-cycle the module if you are not). You should see messages from the RDLM in your terminal window that look something like this:

MB0CR: 88

MB1CR: 88

MB2CR: c6

MB3CR: c6

End of RAM: 100000

Using 512k flash chip.

ZW ID block is 132 bytes

ZW ID block is 132 bytes

ZW ID at 0x7FF7C, User Block at: 0x7C000

Board id: 1300, Free xmem=503808.

No valid .bin to load, running DLM.
Network init.
IP address:10.1.1.64, Port=2000
Startup Complete :-).
Press CTL-C to reboot.

Your new module is now accessible via an Ethernet connection and is ready to have a boot image file downloaded.

3.2
Downloading an application boot image file (first time)

Once the Download Manager has been loaded on to a core module, it can be accessed via an Ethernet connection using SHDesign’s Update Manager (UpdateMGR.exe) which is provided with the Download Manager (http://www.shdesigns.org/rabbit/resident.shtml). I also recommend using the NSCL Device Manager application for managing all your DEBROS-based devices (see Appendix on the Device Manager).
WARNING: For the following steps, be CERTAIN you are selecting the new controller. Selecting the wrong one and doing any of the following steps can cause a live controller to reboot!!! The new controller will generally be the only one with “SHDesign’s Resident Download Manager” as the name and an IP address starting with “10”.

For the following steps, you must be using a PC that is configured with a 192.168.#.# address with a Subnet mask of 255.255.0.0 for its primary or secondary address. You can check this using the command “ipconfig /all” in a command prompt window (Start / Run / “Cmd”).

NOTE: References to the Device ID in the following refers to the NSCL convention of including a hardware-settable value (usually using DIP switches) to uniquely identify a specific device within a class of devices. The DEBROS code reads this value on startup by calling a standard function in the Board Support Package. If the ID is a reserved one (0x00E0-0x00FF) then it forces the IP address to a known value (192.168.224.240 – 129.168.250.255). Note that this functionality applies only to the DEBROS code. The RDLM knows nothing about this convention.

1. If using hardware that supports the NSCL Device ID convention, set the Device ID switches to one of the reserved values (0x00E0 – 0x00FF). Use the NSCL Device Manager application (DevMgr.exe) to determine what ID’s are currently in use (click on the Dev ID column to sort by the ID and look at the bottom of the list).

2. Connect the core module to the Ethernet network.

3. Start the Softool’s Update Manager (UpdateMGR.exe). If the list of devices remains blank for more tha a few seconds, or you wish to refresh it at any time, click on the “Search for Devices” button to get a list of live controllers.

4. Select the new controller (the one with the name “SHDesign’s Resident Download Manager” and an IP address starting with “10”).

5. Use the “Change IP” button to change the IP address (this is a temporary change only, lost after rebooting). Set the IP address to 192.168.250.#, where # is the decimal equivalent of the reserved Device ID you used above (0xE0-0xFF: example: 0xF8 = 248, 0xF9 = 249, etc).

6. Reselect the new device. Be SURE you are selecting the one you just changed the IP address for. WARNING: If you get a pop-up window with the message “This device is running user code”, then you have most likely selected the WRONG device! If this happens, BE SURE to click on the NO button, or you will cause the controller to shutdown the application and run the Download Manager (effectively disabling the device the controller is connected to!!!!)

7. Once you are sure you have the right device selected, double-click on the entry for the device and click on the “Advanced” tab. Change the “Device IP Address” to the same one you used above and click on the “Apply” button. The IP address will now be retained across reboots and resets.

8. Click on the “Download” tab, and then on the “Add File” button.

9. Navigate to the directory containing the boot image file to be downloaded (for NSCL users this is \\icarus\ctlrdata\release). If the file you are going to download is already compressed (as are the ones in the release directory), make sure the “Compress File” option is NOT selected. Otherwise, make sure it IS selected. In general, compressed boot image files are < 150K bytes in size, while uncompressed ones are > 240K bytes.

If you are just trying this process out, or don’t have pre-compressed copies of the boot image files, use one of the starter boot image files from the CVS tree (for example: xxx\appl\starter\xxx\xxx.bin). Just remember to select the “Compress File” option if you are loading one of these files!

10. Select the .bin file for the type of controller you are working on and click “Open” (or simply double-click on the file to open it). The file should download to the core module.

11. Reset the controller to start the downloaded boot image/application file. If you have a serial terminal running and connected, you should see the Download Manager restart and load the boot image you just downloaded.

12. If the module successfully boots the DEBROS code and initializes the network, you should be able to open telnet connections to it. If you have problems, connect a serial port on your PC to the PROG/DIAG port on the Rabbit module (see the previous section for details), start your terminal emulator using the same serial port, and press the Enter key once or twice to get a command prompt (be sure to use 115200 baud, no parity, 8 data bits, 1 stop bit). You can then use the ifconfig command to set the IP address. Other commands (such as netstat, arp, lsof) can also help you to diagnose network problems.

3.3
Updating boot image files

Once the Download Manager has been loaded on to a core module, it can be used to quickly download a boot image file that contains DEBROS and the application code. But while this is the fastest way to replace a boot image with a newer one, it requires you to shutdown DEBROS and run the RDLM.

Because it is not always convenient to shutdown DEBROS in order to update the boot image file, DEBROS includes an “update” command that will download a new boot image from a remote file server while the application code (and all other processes) continue to run.

Using the update command is not as fast as using the RDLM to download a new file, but it allows you to do it in the background without disturbing the application. When done this way, the new boot image can be ready to run as soon as you reboot DEBROS, shortening the time that the device will be offline.

The NSCL Device Manager application can even be used to send commands (such as the update command) to many devices at once, making it possible to update a bunch of controllers all with a click of a button. Using this method, you can update a large number of controllers easily, and then reboot them all (or a selected group) to activate the new code whenever it is most convenient. Shutting down, decompressing and loading the new boot image, and reinitializing the network takes less than 40 seconds.

By default, the update command assumes the pathname for the file it needs to download is the same as the boot image it is currently running with a prefix of /srfs/release/. The first part (/srfs/) tells the file system to use the SRFS (Simple Remote File System) driver to open the file (see the chapter on filesystems for details on the SRFS service). The second part (release/) refers to the directory off the root folder for the SRFS server that it will look for the new boot image file in.

So, to download a new boot image file using the update command, you do the following:

1. Compile and link your updated code

2. Use the lz77 utility from SHDesigns to create a compressed version of the resulting .bin file and save the result to the release directory just under the SRFS root directory.

3. Run update on the controller(s) you want to download the new boot image to.

4. Reboot when convenient.

See the chapter on the file system for details on SRFS, and the description of the update command for more details and additional options for updating the firmware.

4.0
Overview of the DEBROS platform and tools
The only other RTOS platform I have done any development for is VxWorks. Since it is the only one I have experience with, and it is an older version, I can’t vouch for how typical an RTOS platform it is. But I have noted (after the fact) that DEBROS has a number of similarities to the VxWorks platform (this was not intentional – it just worked out that way, and I didn’t even think about it until I started writing this manual):

· An updatable BIOS or bootloader: The RDLM (Resident Download Manager) from SHDesigns (http://www.shdesigns.org/rabbit/resident.shtml) resides at the beginning of flash memory. It provides a small, simple file system and manages loading the image containing the main operating system and application code in to RAM at startup.

· A preemptive, priority-based RTOS with a global/shared memory structure, all stored in a single binary boot image

· Changing the code means rebuilding the boot image file, copying it to the controller, and rebooting the controller to load it in to memory

· Login shells for command-line access to the system provides the means to interact with the system while it is running and to run diagnostic commands with minimal effect on the running system

· Access to a remote file system that provides extended storage beyond what is available on the controller

All this is a huge improvement over the way I used to do development for the Rabbit modules. The rest of this chapter provides an overview of the DEBROS platform and some comparisons to how it is different than more conventional ways and my pre-DEBROS days of using Rabbit modules.

4.1
Running from RAM vs running from flash

When I first worked with Rabbit Core Modules from ZWorld years ago, I followed the proscribed model of running the code directly from flash, using RAM for all variable data storage. A small portion of flash referred to as the “User Data Block” was reserved for the application code to store “persistent” values that you wanted maintained across power cycling and resets.

The main advantage to this approach was that no RAM was used for storing the code. Almost all of it was available for storing runtime variables. But it had some significant disadvantages as well:

· Modifying persistent data values (anything in the “User Block” in flash) was a process that incurred long (several seconds worth) of delays. I believe this is because writing to the same flash chip you are running the code from is a problem, so such writes were accomplished by copying a temporary function to RAM, calling the temporary function so it could copy the data to flash while running from RAM, then return back to the calling function (in flash). Also (presumably), all interrupt handlers were disabled during this process as well. Whether or not this is an accurate assessment of the process, the effect was that any time I wrote to the “User Block”, my application would effectively be “dead” for several seconds. Its possible that if I understood the process better there might have been things I could have changed in my code to reduce the length of these “dead” periods. But the fact remains that writing to flash while running from flash is apparently a significant problem.

· It depends, of course, on the type of RAM and flash chips used, but running from flash is often slower than running from RAM because of the need for more wait states.

The DEBROS model, by comparison, runs entirely from RAM, so it is as fast or faster than the same code running in flash, and the code for writing to flash, even before the DEBROS-specific modifications, is MUCH faster than the Dynamic-C version (which can take several seconds to write even a small number of bytes to flash). While you can’t entirely eliminate the latency issues caused by writing to flash, the affect of doing so using the Softools and DEBROS versions is (at least) an order of magnitude better than what I got with the 2007 version running from flash.
4.2
The Download Manager and boot-loader

In my pre-DEBROS days, the method I used for remotely updating controllers was the old ZWorld split-flash-in-half approach: The 1st half of flash contained the download manager (which ran an FTP server), and the 2nd contained the actual application code. Rebooting the module caused the download manager to run, which would wait for a (settable) period of time for an FTP connection to be established. If no connection was established, or an existing connection was idle for too long, it would check the contents of the other half of flash and pass control to it if it appeared to contain an uncorrupted file.

This was a simple approach that did not require me to purchase any additional software, but it meant a large chunk of the first half of flash memory was “wasted”. Given that all my string constants were also stored in flash, it wasn’t too long before my code wouldn’t fit in the 2nd half of flash.

The SHDesigns Resident Download Manager (http://www.shdesigns.org/rabbit/resident.shtml) addresses the disadvantages of this approach in a number of ways:

· It uses UDP rather than TCP connections to download code, so it gets by with a much smaller portion of the network stack, which translates in to far less code.

· The amount of flash reserved for the DLM is just what it needs (64K), not half of flash!

· It supports the use of compression so you can usually fit both a primary and a secondary or backup copy of your code in flash and still leave a significant portion available to store whatever you want.

· On startup, it does not wait for a possible download connection, but immediately begins loading the primary or secondary boot image. The delay at startup is not needed to provide a means of updating the code because the boot images are stored as files, which means the application can update them at any time, even while the current version of DEBROS and application code are running.

4.3
The Simple Remote File Server (SRFS)

The small flash file system provided by the SHDesigns Download Manager is extremely handy, especially with the additional DEBROS layer that allows you to use conventional open(), read(), write(), lseek(), close(), etc calls to access it. But it only supports 12 files, and there is no wear-leveling so constant writes to flash can quickly wear out portions of it. And of course the space is rather limited.

To allow virtually unlimited storage and a place to store backup copies of data, DEBROS provides support for a simple (i.e. low overhead, little code, no security) remote file service. The current implementation does not provide any kind of sliding window for sequential reads or writes, so it is quite slow, but it provides a place to store backup data, log files, and a standard place to store things like the latest version of the boot image files.

The existing SRFS server supports the following basic functions: open(), close(), read(), write(), lseek(), fstat(), unlink(). It also implements its own “keep-alive” packets so it can detect when the client side of the connection has died and terminate the connection. It will accept path names relative to its root directory, but it does not support the concept of a “current directory” other than the root.

DEBROS currently uses the SRFS server for the following functions:

· Automatic backup and restore of files that contain configuration data

· Archival storage for its system log (more on that below)

· Storage for new and/or archived versions of the boot image files

4.4
Primary and backup boot image files

As mentioned above, the SHDesigns RDLM (Resident Download Manager) supports two boot images: A primary and a secondary or backup. It first tries to load the primary image and, if it passes a CRC test, control is passed to the loaded binary image.

Shortly after getting control, the loaded image needs to call a function that sets a flag in flash indicating that everything appears to be running smoothly. If this flag is not set, the RDLM assumes that the image crashed and the controller rebooted, so it attempts to load the backup or secondary image instead. If that also fails, the next time the RDLM runs it will assume both images are bad and it will not load either one. In that case, the user can use SHDesigns Update Manager application to modify the files on the controller and to reboot it.

By compressing the boot image files before (or during) the process of downloading them to a controller, you can generally store 2 different boot images, or 2 copies of the same boot image in flash with room left over for files that store configuration data, etc.

Purchase of the SHDesigns RDLM includes a separate application (LZ77.exe) to compress files before download, the source code for the Update Manager application, and source code for a function that will decompress files compressed by LZ77.exe or the Update Manager.

Updating the boot image files on a controller can be done either while the RDLM is running, or (if the boot image code supports it, as DEBROS does) while your application code is running. DEBROS provides the “update” command to launch a separate task to manage this, although the newer versions of the RDLM code now make it easy to support initiating this from the Update Manager. DEBROS currently doesn’t allow the later, as the library functions for doing so would have to be modified to avoid concurrency issues.

While I believe the modifications to allow this would be fairly simple, I have found that using the update command and my own Device Manager application to be much simpler. It also avoids problems we have had in the past when ALL the live controllers would show up in the Update Manager application. Part of the problem was that the Update Manager application would not show multiple devices on the same line (at least some of causes for this were fixed in later versions). The other is that the Update Manager list window is hard to read. Some simple enhancements like using a table with individual columns and the ability to sort by columns would go a long way.

The bottom line is that locating one new controller out of hundreds was a pain, and it increased the risk of selecting the wrong one, probably rebooting one that was doing something critical by mistake. Since I needed much more than the Update Manager could provide in terms of monitoring and managing all our Rabbit-based controllers, I wrote an application called Device Manager that does everything I need and makes my life much easier. For details on the Device Manager, see the paragraph later in this chapter on the Device Manager and the appendix.
4.5
Persistent values

DEBROS provides macros and processes to support “persistent” variables. Simply put, persistent variables are ones whose values you want restored to the state they had before the last reboot or reset.

Just about any variable or structure can be included in one of the lists of persistent variables. On startup, DEBROS attempts to restore the last saved value for all persistent values. But there is more than one type of persistent value, each type serving a different purpose.

Persistent values are subdivided in to groups, some of which are automatically saved when a change is detected, and others that are saved only when the user or some other task triggers the save. The automatically saved ones generally represent run time settings (like the desired position for a motor, or the output from a power supply), while the manually saved ones represent configuration values you might not want saved until you have verified the new values are correct. Also, persistent values can be device-specific or device-independent (see the section below on Managing Multiple devices for details).

For example, if you changed the calibration for some analog output, but made a mistake, you wouldn’t want it automatically saved, especially if it caused the device to malfunction. Including such values in one of the lists of manually saved values means you could verify the new value before saving it and, if you got it wrong, you could reload from the saved values or reboot the device to go back to using the previous value.

Each list of persistent values is stored in a separate file. The name for the file is constructed from the Device Type, a unique name provided by the definition for the list, and (for lists of device-specific values) a Device ID (see the section on Managing Multiple devices for details on Device Type and Device ID values). For example, one of the standard manually saved, device-specific lists for DEBROS applications is called devData, so its file name takes the form MyAppl_x01_devData, where MyAppl is the short name for the application and x01 is the Device ID.

DEBROS runs a daemon process named backupd that periodically compares the current in-RAM value of each persistent variable in the automatically saved lists to the value last saved to flash. If a change is detected, then the saved copy is updated with the new value.

The backupd task also checks to see if a backup copy of the file exists on the SRFS server. If a backup copy does exist, whichever one is newer is copied over the older one. This is a vital part of the processes described below that help simplify maintenance tasks.

4.6
Managing multiple devices

Device IDs and calibrations

The majority of the DEBROS applications I have written involve controllers that are attached to one or more external devices (motors, power supplies, sensors, etc). To interface with the external devices, many of our controllers contain ADCs (Analog-to-Digital Convertors) and DACs (Digital-to-Analog Convertors). For most of these applications, the controller needs to be calibrated to the specific set of devices that it is connected to.

The simplest approach to calibrating such a controller is to create a mapping between the raw ADC/DAC values and the corresponding actual state of the devices (measured in some human-friendly engineering value like inches or degrees or psi). This is also the most efficient approach in terms of minimizing CPU cycles needed to convert between the two.

Unfortunately, this simple and efficient approach has a major drawback: Unless you have exceptionally precise analog components and ADC/DAC chips, the raw ADC and DAC values that correspond to a given signal level will be a little different for each controller, so the calibration has to be redone if the controller fails and you have to swap it for another one.

For us, this was not an acceptable mode of operation. Taking the time to redo the calibrations just to swap out a failed controller not only takes a LOT more time, but in some cases it cannot be accomplished without causing major havoc to the rest of the system (since calibrating often involves running the device at settings close to the limits).

An alternative approach is to split the calibration in to two parts: Controller-specific and Device-specific.

The Controller-specific calibrations apply only to the circuits within the controller. They allow us to convert between the precise voltage or current values (as measured at the connectors on the case of the controller) and the corresponding raw ADC/DAC values. The Device-specific calibrations apply only to the devices that are external to the controller. They allow us to convert between the precise voltage or current values (as measured at the connectors that plug in to a controller) and the human-friendly engineering units for the devices.

Using the alternative approach means we can now perform a “bench-top” calibration on each controller, independent of which specific group of devices it will be connected to. Likewise we can perform a calibration on the devices that a specific TYPE of controller will be attached to independent of WHICH specific controller will be attached to them at a given time.

With this approach, any controller (of the right type) can be connected to and properly control a given device without the need for redoing the calibrations. All it needs is a copy of the correct device-specific calibration data. If we need to update the device calibrations at a later time, we can do so without having to recalibrate any of the controllers.

Of course, this approach only works if the controller DOES have the correct device-specific calibration data. To make the process of swapping controllers as simple as possible, we have adopted the following standard practices.

· Each controller application contains a hard-coded Device Type.

· Each specific device (or group of devices) managed by a single controller is assigned a Device ID that is unique for the corresponding Device Type.

· Each controller has a set of inputs it reads to determine the Device ID of the device it is connected to.

In our case, the inputs that provide the Device ID are usually connected to a set of DIP switches. When connecting a controller to a device, all we have to do is set the DIP switches to match the ID assigned to the device. This is especially easy if we are swapping controllers, since we can just set the switches on the new one to match the settings on the old one. While it would require additional connections to the controller, an even simpler method would be to have the switches external to the controller, in which case nothing would need to be set when swapping controllers.

On startup, the controller reads the Device ID and combines it with the hard-coded Device Type. Together with a name assigned to the list of values that include the device-specific calibration data, they determine the unique name for the file that is used to store the calibration data.

If you haven’t yet read the previous section on persistent values, you should do so now. If you have read it, you are probably already starting to see how they tie in to what I just described.

The file with the device-specific calibration data is in fact the devData list used as an example in the previous section on Persistent Values. Because the Device ID is part of the filename, all we have to do is set the Device ID switches correctly and the controller can locate the needed configuration values.

A subtle but important aspect of how persistent values are handled is the automatic backup and restore process that insures that the most recent version of a given file is the one used.

Suppose, for example, that I update the device-specific calibration using controller A. Then at some time after I make the changes (could be minutes or years), the controller fails, so I swap it for controller B. For controller B to produce the same result for a given setting, the swapped in controller must use the latest calibration data for the device it is now connected to. This is true even if controller B happens to have been connected to the same device in the past and has an older, outdated copy of calibration data for the device.

So here is what happens:

· I change the calibration using controller A. I verify the new values and tell it to save them. The backupd task sees that the local copy of the file that values are saved in is newer than the copy on the SRFS server, so it overwrites the remote copy.

· Controller A fails, so I swap it for controller B.

· The backupd task on controller B sees that it does not have a copy of the file with the calibration data for the device, or it is older than the one on the SRFS server, so it copies the one from the SRFS server and reloads the values in to RAM.

· Controller B is now using the values that were updated in the past using controller A, and everything works just like it did before.

Automatic Discovery and Configuration

The ability to open multiple command shell connections to a controller is very handy and helps make remote management easy. But that only works if the network interface is already properly configured. While it is true that you can access any DEBROS controller by using serial port A (/dev/tty0) as a serial console, that requires physical access to the controller, which is not always practical.

To provide the ability to communicate with controllers when we don’t know their IP address, DEBROS provides a command and configuration service that works using UDP broadcast packets. This service currently supports 3 types of packets: Announce, Set, and Query.

Announce packets are periodically generated by all DEBROS controllers. They effectively announce the existence of a controller, provide basic configuration data, and indicate how long the controller has been running since its last reset/restart. Other controllers process all the Announce packets they see looking for configuration conflicts (e.g. two controllers using the same hostname or IP address, or with the same Device Type and Device ID). When a controller reboots, or when certain configuration values change, the interval between announce packets is short (a second or so). The interval is gradually increased until it reaches one minute. The intervals are also staggered a bit based on the Device ID to minimize the possibility that a group of controllers will send announce packets at the same time, which could result in bursts of broadcast packets.

Set packets are used to alter the configuration of or execute a command on one or more controllers. They contain one or more conditions that each controller checks to determine whether or not the packet applies to it. If it does, the controller applies the new configuration value(s) or executes the specified command. This is a very handy way to modify settings (e.g. the time zone) on multiple controllers, or to get them all to update their boot image.

Query packets are used to discover controllers. Like Set packets, they contain one or more conditions that specify which controller or group of controllers should respond to the query. The response to a query is always an Announce packet. The primary use of Query packets is to give the control system a means of configuring new controllers. When it does not have an active connection to the desired controller, it periodically sends out Query packets looking for a controller with specific Device Type and Device ID. If such a controller exists, it should respond with an Announce packet that includes it MAC address. When the control system receives an Announce packet with the matching Type and ID, it can then send a Set packet targeted at the specific controller it is looking for, telling it what configuration it should have (primarily the IP address). When the targeted controller sees the Set packet, it changes its configuration as directed which enables the control system to establish a one-to-one TCP connection (in our case, this is usually a ModBus over TCP connection).

For more details on the configuration deamon (configd) and the protocol it uses, see Appendix B, Automatic Configuration, Backups, and Restores.
The Device Manager

Another tool that is very helpful in managing controllers is the Device Manager. This is an application written using the open source version of Qt, a popular cross-platform set of tools and libraries for writing C++ applications that can be built and run on Windows, Linux, OS-X, and Unix platforms.

The Device Manager uses the broadcast packets described above and in Appendix B to monitor the state of controllers and to simplify management of a large number of controllers. It includes the following capabilities:

· A continuously updated list of all the controllers that have sent an Announce packet since the application was started or the list was refreshed.

· Change the IP address of a controller.

· Open a telnet connection to 1 or more of the controllers.

· Send a command to 1 or more of the controllers.

The list of controllers is shown as a table, where each row is a unique controller and each column is one of the values included in the Announce packets or a value derived from one or more of them. The columns include the following:

· The type of application code running on the controller

· The Device ID

· The controller’s hostname

· The IP address

· The MAC address

· The version of the application code currently running (shown as the date/time it was compiled)

· The version of the OS code currently running (shown as the date/time it was compiled)

· How long since the controller was last booted

· How old the information about the controller is (i.e. how long since we last saw an Announce packet from the controller)

A Refresh button is provided to cause a packet to be sent out that resets the announce interval for all controllers to 0. This provides a way to quickly populate the list just after starting the application, or to insure it has all the latest information. The interval then grows again, so the resulting sudden increase in broadcast packets quickly subsides.

A pop-up menu also provides an option to remove a row from the list for a device that is no longer on line, without having to restart the application.
For more details, see the Appendix on the Device Manager.

4.7
Modbus interface

The method we currently use to communicate with all our DEBROS controllers is a subset of version 1.0 of the specification (as documented on March 29, 1999) of the open Modbus/TCP protocol. As of this writing, this document was available at the following URL’s:

 http://irtfweb.ifa.hawaii.edu/~smokey2/software/about/sixnet/modbus/Modbus_TCP_Standard.doc
 http://www.jdsbw.org/user/UploadFiles/Modbus-TCP%E8%A7%84%E8%8C%83.pdf
A newer document that appears to be a superset of the older document can be found here:

 http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
The sample DEBROS application code and header files contain macros that make it easy to declare numeric variables that double as Modbus registers. Such values are accessible via the Modbus protocol, shell commands that allow a user to view, track, and/or modify such values at run time (“reg” and “watch”), and an early version of a “software oscilloscope” interface (see the description of the “scope” command).

The Modbus protocol was originally chosen because it is a popular industry standard and because it is fairly simple and does not require a lot of code to implement.

However, the simplicity of the design means it does have limitations. Aside from the fact that it is not designed to handle data structures of arbitrary size or format, the simple query/response nature of its design requires constant polling for most applications which wastes network bandwidth and decreases response time.

A newer version of the spec is available that describes extensions that support an “object messaging” mechanism which could be used to overcome these limitations.

 http://www.modbus.org/docs/Object_Messaging_Protocol_ExtensionsVers1.1.doc
NOTE, however, that the extensions effectively define only a “grammar”. The lack of even a minimal standard vocabulary means that, even with human assistance, there is no way to interrogate an unfamiliar device and make use of any of its information. Of course, the same could be argued for the original Modbus protocol, since it also does not provide any standardized method for getting even a list of valid register addresses, much less information like data types and names.

A far more capable protocol that we are considering implementing is the EPICS Channel Access protocol (http://www.aps.anl.gov/epics/docs/ca.php). Part of the motivation for this is that we use EPICS for our control system, so it would be a natural fit. But it also provides many of the advantages of the “Object Messaging Specification for the ModBus Protocol” without being so open as to make interoperability with devices and software from other vendors unlikely. Of course, this additional capability will require much more code and run-time resources than the basic Modbus server code does. It may or may not turn out to be a practical alternative.

4.8
System log

One of the most basic and useful diagnostic tools that any device can provide is logging. It provides a means to look in to the past and see what events occurred, providing valuable clues when you discover that your code doesn’t behave as you expected.

Even my pre-DEBROS code provided a small log to track events using a small chunk of memory as a circular buffer. But because the log existed only in memory, it had to be small, so if a lot of messages were generated in a short time, or you didn’t discover the problem right away, the information you needed was probably long-since written over. A power loss also meant the entire log would be lost.

DEBROS improved on this simple method in a number of ways:

· DEBROS includes a backupd task that frequently checks the in-RAM copy of the log for new entries and copies them to the end of a file stored on the SRFS server. It opens a new file each day, using the month and day in the name so one year’s worth of logs can be kept without any external intervention needed.

· The process of writing a message to the log can be preempted, so writing to the log does not cause scheduling delays or block higher-priority tasks. *

· On startup, DEBROS checks for a previous instance of the log in RAM and restores it if one is found. So even log entries that hadn’t been copied to the remote file yet will survive a reset. If your design provides a battery to keep the RAM powered up (and the 32KHz oscillator that drives the counter used for the clock), then the log will even survive an extended power outage.

· The state of the watchdog count-down timer is monitored. If it is about to cause a reset, information about the current state of the system is written to the log (and a local flash file) before the reset is allowed to occur. Since the log survives the reset, that information is copied to the log after the restart (and is available in the separate flash file as well).

* Note that, while writes to the log can be preempted, they do NOT block. The system log is currently NOT a resource that can become busy. This is good and bad for high-priority tasks. It means you don’t have to worry about them blocking, waiting for a shared resource to become available, possibly delaying some important processing. But formatting data (especially floating-point values) for human consumption is often very CPU intensive, so if you do it too much in a high-priority task, lower-priority tasks will suffer. This is especially true of the main application task, which runs at the highest priority (even higher than the kernel).

Also note log messages can be “lost” by generating them faster than the backupd task can copy them to the remote file. The only ways to avoid this would be to treat writes to the log the same as any other file descriptor: Block the caller if necessary unless blocking mode has been disabled. The former would not be practical for real-time tasks, while the latter would mean adding code to check for a busy error and dealing with the error in some useful way (also generally not practical for real-time tasks).

In practice, I have found that loss of log messages is a rare occurrence with the in-RAM log acting as a buffer for the backupd process. But of course you may have a different opinion about what constitutes a reasonable volume for log messages. If this becomes an issue, I could make it a configurable option (never block but risk a loss of some messages, like it is now, or allow blocking mode to be enabled or disabled and handled just like other file descriptors).

4.9
Network configuration

DEBROS supports several different ways to set the IP address for the Ethernet interface:

· The ifconfig command, typed at a command shell or sent from the Device Manager

· Use of the “Set Addr” button in the Device Manager

· Setting the Device ID to one of the reserved values (0xE0 – 0xFF)

· Via the SHDesigns Update Manager application while the RDLM (Remote Device Manager) is running

See the chapter on User Command for details on use of the ifconfig command.

Network configuration

· Device ID’s

· Reserved device ID’s vs forced addresses (note that DLM does not recognize device ID’s or the notion of reserved addresses)

· Changing the configuration

4.10
Floating point: speed vs accuracy

Faster (but less accurate) floating point multiply function written in assembler.

Xxxx

5.0
Doing development in the DEBROS environment
Flat, unprotected memory: Any bugs can trash anything, affecting other tasks. Think Windows 3.x, 95, WfWG, VxWorks, …

Xxxx

5.1
Modifcations to Softools source

* Run the Softools WinIDE application and select "Install TCP/IP source code"

 from the "Options" menu.

 * C:\Program Files\Softools WinIDE\Rabbit 1.70\Include\Stcpip\errno.h:

 Comment out the following line near the beginning of the file:

 #define errno _errno

 So it looks like this:

 extern int _errno;

 //#define errno _errno

 #define _set_errno(val) (_errno = (val))

 * C:\Program Files\Softools WinIDE\Rabbit 1.70\Include\Stcpip\net.h:

 Increase the size of the ARP table:

 #ifndef ARP_TABLE_SIZE

 #ifndef ARP_TABLE_SIZE

 #ifndef ARP_MINIMAL

 // #define ARP_TABLE_SIZE (5*USING_ETHERNET+IF_MAX)

 #define ARP_TABLE_SIZE 32
 #else

 #define ARP_TABLE_SIZE 1

 #endif

 #endif

 * C:\Program Files\Softools WinIDE\Rabbit 1.70\Stcpip\udp_11.c

 * C:\Program Files\Softools WinIDE\Rabbit 1.70\include\Stcpip\udp.h

 Change the declaration for udp_recvfrom() so it takes a far * for

 the buffer:

 _udp_nodebug int udp_recvfrom(udp_Socket* s, void far * buffer, int len,

 longword* remip, word* remport)

 The function casts the pointer to a far anyway when it calls _tbuf_xread()

 so this does not affect performance.

 * Using the Softools WinIDE application, open the WinIDE project file:

 C:\Program Files\Softools WinIDE\Rabbit 1.70\Stcpip\stcpip.prj

 * Select "Build" from the "Build" menu to recompile and link the library.

 NOTE: The last time I did this I got an error when it tried to compile

 the file http_35.c, so I removed all the http_##.c files from

 the project (since we don't use the HTTP stuff at this time it

 is not currently a problem).

 The Softools processed version of the original DC (DynamicC)

 source files splits everything in to a bunch of separate modules

 to minimize the total size of the object code included from the

 library when creating actual application .bin files, so leaving

 out or removing unused modules has no effect on the size of the

 application files that use libraries created this way.

Simpler, linear memory model (since it doesn’t have to support the ability to run from flash)

5.2
xxx

Xxxxxx

· Comparison between Dynamic-C and Soft-C

· make scripts

· root memory and defaulting most string constants to far

· configurable values for setting resource limits

· locking

· scheduler lock

· critical sections

· writing a module for your hardware

· writing your own application

· programming model I use

· importance of locking, types of locks supported

· syslog, printf overhead, latency, other considerations

· writing your own commands

· incomplete support for signals and the need for checking for Ctl-C

· writing your own daemon task

· detaching from stdio, syslog, etc

· handling termination gracefully

· inetd table

· writing your own filesystem/device driver

· task, global, and driver-level descriptors

· prefixes vs driver selection

· wait queues

· nested use of drivers (SRFS example)

· critical sections vs KLOCK()/KUNLOCK()

· Common linker warnings/errors

· Overlap

· Resolved word expression out of range (FARCONST needs to NOT cross a 64K boundary)

· Exit() vs exit()

· analog inputs/outputs

· calibrations

· hdw (raw) vs voltage/current (controller) vs application level

· averaged values

· writing to syslog

· serial port modes: SPI, RS-232, RS-485/packet mode

· devData, settings, hdwcfg param files

· Using RFU wipes the flash file system

· serial port A, DIAG/PROG connector, orientation of the connector, etc

· X-macros

· Labels, ios

· Forced values for inputs/outputs

· Debugging

· No protected mode

· All global variables are shared

· No users, security, etc

· limited handling of signals

· FAST_RAM=1 for RCM3200 (and other modules, no doubt)

· why STACK_SIZE=4096 is important

· suggested use of a DB-9 connector on controllers

5.3
Application code model

errno definition

the applic task, and why it runs at a higher priority than even the kernel task

5.4
Tips

Passing buffers to minimize stack usage

Passing fd’s to minimize descriptor usage (and sockets when the files are not local)

6.0
The DEBROS code
The DEBROS code is organized in to the following groups:

· Kernel

· Device (file system) drivers

· Hardware/architecture platform

· Client and daemon processes

· User commands

· Applications

Xxx

6.1
The kernel and scheduler

The core task-switching code in DEBROS was derived from SHDesigns’ “CoExec Multi-tasking exec”, available for free at http://www.shdesigns.org/rabbit/freelibs.shtml. Preemptive calls to the scheduler are made from the interrupt handler that updates the millisecond and second counters. The code for triggering the period interrupt is a modified version of the “Rabbit Board Timer B Library” which is also available from the SHDesign’s web site.

xxx

xxx

6.2
Drivers

Implementation of the DEBROS VFS (Virtual File System) API for various devices including:

· FIFO

· Flash file system (wrapper for the simple flat file system that is included with SHDesigns’ Resident Download Manager)

· Serial ports

· Char-mode async (e.g. RS-232)

· Packet mode async (e.g. RS-485)

· Clocked synchronous (SPI mode)

· TCP and UDP sockets

· SRFS (Simple Remote File System)

xxx

6.3
Hardware support

Hardware initialization, analog and digital I/O functions…

“registering” file systems…

6.4
Clients and daemons

inetd

backupd, configd, fastdatad, getty, modbusTCPd, …

xxx

6.5
User commands

standard, DEBROS common, application specific, …

xxx

6.6
Applications

Single appl task, run-to-completion loop, non-blocking, …

xxx

6.7
Configurable limits

tasks, TCP and UDP buffers, file and pathname lengths, stack size, …: limits.h:

xxx

7.0
DEBROS in detail
Xxxx

Xxxx

7.1
xxxxxx

Xxxxxx

Xxxxxx

· Overview of the kernel and scheduler

· Stdio handling

· Redirection of Softools functions

· Buffering of terminal I/O

· Latency, ISRs, locking

· Wait queues

· time

· standard time functions and the RTC

· milliseconds and second counters vs RTC

· speed, efficiency of using one vs the other

· offsets

· use of RTC counters for sub-millisecond timing

· timezone setting

· timerb.c, timer_interrupt(), the scheduler, scheduler locking, etc

· What little I know about cstart.asm, and the need for the SHD version

· The different DLM versions

· Priorities

· syslog

· concurrent writing to syslog

· battery-backed memory and restoring previous log, etc

· handling of the watchdog timer and the postmortem dump

· Interrupt handling

· standards for interrupt priorities and importance of adhering to them (e.g. must set IP to 2 in order to insure a task switch cannot happen, but not higher or it can interfere with the millisecond/second counters)

· The existence and importance of the “shims” and NOT undoing them

· The file system

· Use of “prefixes” on file names to indicate which driver to use

· DEBROS equivalent to Virtual File System API

· Proper handling of nested drivers (e.g. SRFS’ use of sockets)

· Nested drivers (like SRFS) vs blocking/non-blocking mode

· Use of standard Linux-style wait queues

· Flash file system and the DLM

7.2
Memory Map

The following is an example memory map from the Softools linker for a DEBROS runtime image. The order of the segments is always the same and provides a nice simple, linear memory map – much simpler and less confusing than the default one, which has to deal with the possibility that the code may run directly from flash memory, using RAM only for writable data (the DATA, BSS, and FARBSS segments, plus of course extended memory).

The sizes shown will be different for each application, but the ones shown below are fairly typical, since most of the code is part of DEBROS itself and the various libraries, not the application-specific portion.
Start End Phys St Phys End Size Segment Class

--

00000000 00002CFA 00000000 00002CFA 002CFB CODE CODE

00002CFB 00003A9A 00002CFB 00003A9A 000DA0 CONST DATA

00003A9B 0000467D 00003A9B 0000467D 000BE3 DATA DATA

00005000 0000B585 00005000 0000B585 006586 BSS DATA

0000D000 0000DFFF 0000D000 0000DFFF 001000 STACK STACK

0000E000 0001A984 0000E000 0001A984 00C985 FARBSS DATA

0001B000 00052D1B 0001B000 00052D1B 037D1C FARCODE CODE

00052D1C 00059526 00052D1C 00059526 00680B FARCONST DATA

00059527 00059528 00059527 00059528 000002 XMEMSTART DATA

--
The following shows the typical allocation of extended memory at run time (mostly during startup). The sizes shown will vary depending on the settings of various limits.
Allocated via xalloc() during startup:

663C2 - 75A09 Network lib

76000 - 7CFFF Stacks

7D000 - 82FFF Far Heap

83000 - 83F59 FAT

83F5A - 84F59 file sector buffer

Allocated via bb_xalloc() during startup:

BBE6E - BBE93 'settings' cache

BBE94 - BBEFF DiagLogInfo

BBF00 - BFEFF syslog

BFF00 - BFFFF CStart
Extended memory starts after the XMEMSTART Segment and encompasses the remainder of RAM (e.g. up through 0x7FFFF for 512K, 0xBFFFF for 768K).
The 4K STACK segment shown in the memory map from the linker is used by the kernel task, which has to have enough to handle the housekeeping tasks performed by each of the drivers, including the network library functions such as tcp_tick().

8.0
User Commands and the command shell
Due to limited resources (of both the author’s time and the available RAM on the Rabbit Core Modules), most of these commands have few if any of the options you may be used to seeing on full-blown Linux systems. However, the basic functionality of each is similar to the versions found on most Linux systems.

8.1
The command shell

DEBROS supports a small, limited capability command shell called tsh (for tiny shell). It currently does not support stty settings such as cooked vs. raw mode, signal generation, flow control, etc. It also does not (yet) require a username or password.

The standard DEBROS configuration supports shell connections via TCP port 23 (telnet) and serial port A (the programming/diagnostic port on Rabbit Core Modules). Shells can also be started on other serial ports using the getty command. For serial port A, set your terminal emulator to 115200 baud, 8 data bits, no parity, 1 stop bit, no flow control. Multiple shells can be run concurrently (I frequently have 3 or 4 going at once), but the practical limits on the maximum number of processes and socket connections (due mostly to the memory needed for each task’s stack and the network packet buffers) means the upper limit is fairly small.

As mentioned, the shell does not currently support signal generation. That means the standard method of killing tasks launched from the shell by sending special characters (like Control-C) don’t work as expected. However, most commands use functions that check for a Control-C in their input and terminate the task if they see this char, so this method still has the desired affect in most cases.

Despite the need to keep things small and basic (nothing chews up memory and CPU cycles like more functionality) the shell does support a few standard features I have found to be very handy: background tasks, command-line history, and pipes.

Support for background tasks is very limited, due primarily to the lack of the ability to generate signals from the command shell and no special handling for the stdio file descriptors. However, it is sometimes handy to be able to execute a command in the background rather than from another command shell, so you can do so by using the traditional method of ending a command with the ampersand (&) symbol. However, the lack of the traditional stty-type handling of stdio means use of the stdio file descriptors is unpredictable (e.g. each character you type could be read by any of the background tasks or the shell itself). For this reason, it is recommended that only daemon processes (i.e. those that disconnect themselves from the parent’s stdio descriptors) be launched in this manner at present.

By far one of the handiest features I have used in any shell is command history. It saves so much typing! As with most things, the DEBROS version is very limited compared to a full-fledged Linux/Unix system, but I found it so tiresome to not have it at all that I just had to add at least a basic version. The DEBROS version is very simple: The up arrow shows the command preceding the one currently shown, and down arrow shows the one following the one currently shown. The buffer size is also very limited and is a fixed size, so the length of the commands typed will determine how many of the previous commands are still in the buffer. And sorry, no command line editing (yet). But I found even this much has made testing and diagnostics much less tedious.

The last feature that I felt was worth my time (and the code space) to implement is pipes. As with most any Linux/Unix command shell you can use the pipe symbol (|) to connect the stdout descriptor of the command preceding the symbol to the stdin descriptor of the one following the symbol (e.g. “cat textFile | more” or “help | more”).

8.2
DEBROS versions of common Linux/Unix commands

The following commands provide basic versions of standard Linux/Unix commands.

arp

NAME

arp - view the system ARP cache

SYNOPSIS

arp

DESCRIPTION

arp displays the kernel's IPv4 network neighbor cache.

ARP stands for Address Resolution Protocol, which is used to find the media access control address of a network neighbor for a given IPv4 Address.

OPTIONS

None supported at this time.

OUTPUT

The Flags column is a bit-masked value shown in hex. The following table shows the meaning of each bit:

ATE_PERMANENT 0x0001 // Do not expire this entry

ATE_RESOLVING 0x0002 // In process of being resolved

ATE_ROUTER_ENT 0x0004 // This is a router entry

ATE_FLUSH 0x0008 // Upper layer requested flush

ATE_VOLATILE 0x0010 // Short timeout for this entry

ATE_GRACE 0x0020 // This entry in grace period i.e. known but being re-resolved

ATE_NOARP 0x0040 // Timeout with no ARP response

ATE_ROUTER_HOP 0x0080 // IP addr not on this subnet - use "router_used"

ATE_PATHMTU_DISC 0x0100 // Path MTU discovery in progress

ATE_RESOLVED 0x0200 // HWA is valid (resolved)

ATE_MULTICAST 0x0400 // Represents a multicast address

ATE_RETRY_MASK 0x7000 // Retry count when resolving

ATE_RETRY_SHIFT 12 // ...corresponding bit shift

ATE_REDIRECTED 0x8000 // This entry was ICMP redirected

The TTL column indicates how long the entry is valid for in seconds.

EXAMPLES

marks-testbox> arp

Net to Media Table: IPv4

Device IP Address Flags Phys Addr TTL

------ --------------- ------ ----------------- ------

eth0 192.168.204.1 0x0210 00:e0:29:24:08:d5 296

eth0 192.168.158.1 0x0210 00:1b:21:30:a9:49 299

eth0 192.168.205.1 0x0210 00:11:09:03:e0:94 296

eth0 192.168.120.25 0x0210 00:90:c2:d1:bd:b2 276

eth0 192.168.120.23 0x0210 00:90:c2:d2:a0:51 277

eth0 192.168.225.3 0x0210 00:90:c2:d1:bd:b3 276

eth0 192.168.157.6 0x0210 00:90:c2:d2:9e:f3 284

eth0 192.168.225.5 0x0210 00:90:c2:d1:bd:9b 291

eth0 192.168.250.241 0x0210 00:90:c2:d2:a0:56 297

eth0 192.168.250.245 0x0210 00:90:c2:d2:a0:46 297

eth0 192.168.125.201 0x0200 00:03:ba:f2:d9:8c 934

SEE ALSO

ifconfig, netstat

cat

NAME

cat - copy a file to standard output

SYNOPSIS

cat FILE

DESCRIPTION

Copy a file to standard output.

It is recommended that this command only be used for viewing the contents of text files.

OPTIONS

None supported at this time.

OUTPUT

The contents of the specified file is sent to stdout.

EXAMPLES

marks-testbox> cat aTextFile

This is the contents of a text file.

No newline conversion is done (yet) by the user shell

So it would need to contain CR’s as well as LF’s

to avoid this effect:

Line 1

 Line 2

 Line3

SEE ALSO

cp, more

cp

NAME

cp - copy a file

SYNOPSIS

cp SOURCE DEST

DESCRIPTION

Copy file SOURCE to DEST.

OPTIONS

None.

EXAMPLES

marks-testbox> cp TCPS_xFB_devData TCPS_xFB_devData.bak

marks-testbox> cp TCPS_xFB_devData /srfs/TCPS_xFB_devData.sav

SEE ALSO

dir, df, ls, stat,

date

NAME

date – show the date and time

SYNOPSIS

date

DESCRIPTION

Shows the current date and time using the local timezone. The output includes the timezone shown as the number of hours offset from UCT.

PARAMETERS:

None

EXAMPLES

marks-testbox> date

Mon Aug 3 15:02:05 2009 (-4)

df

NAME

df – show the amount of free space on the file system

SYNOPSIS

df

DESCRIPTION

Shows the total size of the “disk” space (the flash file system), the amount used, unused, and % used. All values are currently in bytes.

Works only on the local (flash) file system.

PARAMETERS:

None

EXAMPLES

marks-testbox> df

Filesystem Size Used Available Use% Mounted on

/dev/flash 524288 368640 155648 70% /

SEE ALSO

dir, ls, stat

dir

NAME

dir – list files on the flash file system

SYNOPSIS

dir

DESCRIPTION

Shows a list of all the files currently on the local filesystem (flash).

Works only on the local filesystem.

PARAMETERS:

None.

EXAMPLES

marks-testbox> dir

-rwxrw-rw- 1 root root 129318 2009-07-22 13:22 TCPS-nscl16.bin

-rw-rw-rw- 1 root root 8 2009-07-28 11:12 TCPS_xFB_settings

-rw-rw-rw- 1 root root 1660 2009-07-28 11:12 TCPS_xFB_devData

-rwxrwxrw- 1 root root 129318 2009-07-22 13:22 TCPS-nscl16.bak

SEE ALSO

ls, rm, unlink, stat

exit

NAME

exit – exit the shell

SYNOPSIS

exit

DESCRIPTION

Exits the current command shell.

PARAMETERS:

None.

EXAMPLES

Marks-testbox> exit

free

NAME

free – show the number of allocated and unallocated bytes in extended memory

SYNOPSIS

free

DESCRIPTION

Shows the total # of bytes of RAM on the system, the number that are used, unused, and the % of the total that are used.

PARAMETERS:

None

EXAMPLES

marks-testbox> free

 total used free Use%

Mem: 786432 491117 295315 62%

SEE ALSO

dir, df, ls, ps, top

fsck

NAME

fsck – file system integrity check

SYNOPSIS

fsck

DESCRIPTION

Check the integrity of the local file (flash) file system.

fsck checks the linked list of blocks for each inode/file “slot” (including currently free ones) to make sure the list of sectors appears to be intact and appropriate for the stored file size. It looks for “cross-linked” blocks (ones that more than one block point to) and then all the unused blocks.

PARAMETERS:

None

EXAMPLES

marks-testbox> fsck

4096 bytes/sector, 128 sectors, Total 524288 bytes

entry 0: TCPS-nscl16.bin

 32 sectors: Size: 129318 on disk: 131072

entry 1: TCPS_xFB_settings

 1 sectors: Size: 8 on disk: 4096

entry 2: TCPS_xFB_devData

 1 sectors: Size: 1660 on disk: 4096

entry 3: TCPS-nscl16.bak

 32 sectors: Size: 129318 on disk: 131072

entry 4: <unused>

entry 5: <unused>

entry 6: <unused>

entry 7: <unused>

entry 8: <unused>

entry 9: <unused>

entry 10: <unused>

entry 11: <unused>

 used: 270336 bytes (66 blocks)

 rsvd: 98304 bytes (24 blocks)

 free: 155648 bytes (38 blocks)

 0 errors

SEE ALSO

df, ls,dir, del, rm, stat, unlink

getty

NAME

getty - start a command shell on a serial port

SYNOPSIS

getty BAUDRATE PORT

DESCRIPTION

Starts a command shell on a serial port.

BAUDRATE specifies the bit-rate and PORT specifies which serial connection to use.

PARAMETERS:

BADURATE

One of the following values:

115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200, 600, 300

PORT

One of the following: /dev/tty1, /dev/tty2, /dev/tty3

/dev/tty0 is reserved for the diagnostic and console port. To start a shell on /dev/tty0 (port A), simply send it a Carriage Return byte at a baud rate of 115200 (8 data bits, no parity, 1 stop bit).

EXAMPLES

testbox> getty 115200 /dev/tty1

SEE ALSO

lsof, ps

grep

NAME

grep - print lines matching a pattern (aka Global Regular Expression Parser)
SYNOPSIS

grep STRING [FILE]
DESCRIPTION

Scans stdin or the specified file looking for lines that contain the specified string and prints the matching lines.

PARAMETERS:

STRING

A sequence of characters you expect to be in the lines of text you are interested in. No support is current provided for regular expressions.

FILE

The name of a file to search. If none is given, standard input is used.

EXAMPLES

testbox> syslog -x | grep reset

2010-04-08 09:42:44.186 applic[2]: restoring: resetGraceTime

2010-04-08 15:40:02.782 tsh[15]: Created process #41 (grep reset)

2010-04-08 15:40:18.117 tsh[15]: Cmd: grep reset
testbox> help | grep net

 ifconfig Show/set network interface config

 inetd Internet 'super-server'

 netstat Show network connections
SEE ALSO

cat, more
hostname

NAME

hostname – set/show the system’s host name

SYNOPSIS

Hostname [NEWNAME]

DESCRIPTION

If NEWNAME is given, the hostname is changed to the given name. If no name is given, then the current hostname is displayed.

The save command must be used to make a change to the hostname permanent.

PARAMETERS:

NEWNAME

If provided, given name becomes the new host name. The save command must be used to make a new name permanent.

EXAMPLES

marks-testbox> hostname

marks-testbox

marks-testbox> hostname MarksDevice

MarksDevice

marks-testbox> save devData

Updating parameter file: TCPS_xFC_devData

SEE ALSO

save

ifconfig

NAME

ifconfig - show/set network interface configuration

SYNOPSIS

Ifconfig [IPADDR]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ifconfig

eth0 Link encap:Ethernet HWaddr 00:90:c2:c8:59:5e

 inet addr:192.168.250.251 Bcast:255.255.255.255 Mask:255.255.0.0

 UP BROADCAST MTU:1500

SEE ALSO

xxx, abcd

inetd

NAME

inetd – Internet ‘super-server’

SYNOPSIS

inetd

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

kill

NAME

kill – send a signal to a process

SYNOPSIS

kill [-signal] pid

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ps

UID PID PPID PRI STKAV STATUS IDLE TIME CMD

root 0 -1 1 2340 Schedule 5ms 0000:13:28 [kernel]

root 1 0 15 1244 Ready 146ms 0001:33:39 idle

root 2 0 0 574 Schedule 1ms 0000:32:44 applic

root 3 2 3 906 Sleeping 207ms 0000:01:37 inetd

root 4 2 8 474 Sleeping 1ms 0000:04:48 configd

root 5 2 4 306 Sleeping 4ms 0000:02:35 backupd

root 8 3 6 712 Blocked* 50ms 0000:04:06 modbusTCPd

root 269 47 10 484 Ready 0ms 0000:00:00 ps

root 47 3 10 386 Sleeping 35ms 0000:00:23 tsh

root 178 19 10 602 Sleeping 52ms 0000:02:19 state

root 19 3 10 386 Sleeping 6ms 0000:00:55 tsh

marks-testbox> kill 178

SEE ALSO

xxx, abcd

ls

 ls List files

NAME

ls – list files

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ls

-rwxrw-rw- 1 root root 129318 2009-07-22 13:22 TCPS-nscl16.bin

-rw-rw-rw- 1 root root 8 2009-07-28 11:12 TCPS_xFB_settings

-rw-rw-rw- 1 root root 1660 2009-07-28 11:12 TCPS_xFB_devData

-rwxrwxrw- 1 root root 129318 2009-07-22 13:22 TCPS-nscl16.bak

SEE ALSO

xxx, abcd

lsof

NAME

lsof - list open file descriptors

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> lsof

COMMAND PID PFD GFD FLAGS TYPE DEVICE NODE NAME

[kernel] 0 3 0 0x0002 spi 0x618F ser[1] /dev/spi1 mode:0 rate:1000000

applic 2 3 1 0x0021 fifo 0x6164 fifo[7] fifoEvents

inetd 3 3 2 0x0002 IPv4 0x6E59 TCP[4] 192.168.250.251:23 -> *:* Listen

inetd 3 4 3 0x0002 IPv4 0x6E79 TCP[5] 192.168.250.251:502 -> *:* Listen

inetd 3 5 4 0x0022 IPv4 0x6E19 TCP[2] *:2003 -> *:* Listen

inetd 3 6 5 0x0002 serial 0x6177 ser[0] /dev/tty0 115200 baud

configd 4 3 7 0x0002 IPv4 0x6F59 UDP[0] *:2001 -> 255.255.255.255:* UDP Socket

backupd 5 3 6 0x0002 fifo 0x6164 fifo[7] fifoEvents

backupd 5 4 8 0x0016 srfs 0x76BD srfs[0] TCPS_xFB_07-28.log

backupd 5 5 9 0x0002 IPv4 0x6E39 TCP[3] 192.168.250.251:1026 -> 192.168.125.201:2002 Established

modbusTCP 8 0 11 0x0002 IPv4 0x6DF9 TCP[1] 192.168.250.251:502 -> 192.168.125.1:1356 Established

modbusTCP 8 1 11 0x0002 IPv4 0x6DF9 TCP[1] 192.168.250.251:502 -> 192.168.125.1:1356 Established

modbusTCP 8 2 11 0x0002 IPv4 0x6DF9 TCP[1] 192.168.250.251:502 -> 192.168.125.1:1356 Established

modbusTCP 8 3 12 0x0002 fifo 0x6164 fifo[7] fifoEvents

lsof 297 0 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

lsof 297 1 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

lsof 297 2 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

tsh 47 0 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

tsh 47 1 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

tsh 47 2 13 0x0002 IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

state 272 0 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

state 272 1 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

state 272 2 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

tsh 19 0 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

tsh 19 1 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

tsh 19 2 10 0x0002 IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

checking fsf[0] (fifo)

 [7]: 3 refs: fifo 0x6164 fifo[7] fifoEvents

checking fsf[1] (socket)

 [0]: 1 refs: IPv4 0x6DD9 TCP[0] 192.168.250.251:23 -> 192.168.125.100:1647 Established

 [1]: 1 refs: IPv4 0x6DF9 TCP[1] 192.168.250.251:502 -> 192.168.125.1:1356 Established

 [2]: 1 refs: IPv4 0x6E19 TCP[2] *:2003 -> *:* Listen

 [3]: 1 refs: IPv4 0x6E39 TCP[3] 192.168.250.251:1026 -> 192.168.125.201:2002 Established

 [4]: 1 refs: IPv4 0x6E59 TCP[4] 192.168.250.251:23 -> *:* Listen

 [5]: 1 refs: IPv4 0x6E79 TCP[5] 192.168.250.251:502 -> *:* Listen

 [6]: 1 refs: IPv4 0x6E99 TCP[6] 192.168.250.251:23 -> 192.168.125.100:2165 Established

 [12]: 1 refs: IPv4 0x6F59 UDP[0] *:2001 -> 255.255.255.255:* UDP Socket

checking fsf[2] (srfs)

 [0]: 1 refs: srfs 0x76BD srfs[0] TCPS_xFB_07-28.log

checking fsf[3] (serial)

 [0]: 1 refs: serial 0x6177 ser[0] /dev/tty0 115200 baud

 [1]: 1 refs: serial 0x618F ser[1] /dev/tty1 0 baud

checking fsf[4] (flashFile)

SEE ALSO

dir, fsck, ls, netstat, ps, top,

more

NAME

more - show a file or stdin one or several lines at a time

SYNOPSIS

more [name]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> more /srfs/calibs

adccalib show

readcalib show

daccalib show

setcalib show

SEE ALSO

xxx, abcd

mv

NAME

mv - move (rename) a file

SYNOPSIS

mv OLD NEW

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

mv TCPS_xFB_devData.bak TCPS_xFB_devData.old

SEE ALSO

xxx, abcd

netstat

NAME

netstat - show network connections

SYNOPSIS

netstat

DESCRIPTION

Xxx

xxx

PARAMETERS:

None

EXAMPLES

marks-testbox> netstat

Internet connections

Proto Local Address Foreign Address

tcp 192.168.250.251:23 192.168.125.100:1647 Established

tcp 192.168.250.251:502 192.168.125.1:1356 Established

tcp *:2003 *:* Listen

tcp 192.168.250.251:1026 192.168.125.201:2002 Established

tcp 192.168.250.251:23 *:* Listen

tcp 192.168.250.251:502 *:* Listen

tcp 192.168.250.251:23 192.168.125.100:2165 Established

udp *:2001 255.255.255.255:* UDP Socket

SEE ALSO

lsof

od

NAME

od - octal dump (copy/translate contents of a file)

SYNOPSIS

od file [offset [count]]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> od TCPS_xFB_devData 0 0x60

000000: 00 01 00 02 01 00 00 02 00 04 00 00 48 42 00 03 HB..

000010: 00 04 00 00 C8 42 00 04 00 04 00 00 00 40 00 05 B.......@..

000020: 00 04 F4 01 00 00 00 06 00 04 00 00 20 41 00 07 A..

000030: 00 04 00 00 00 40 00 08 00 04 00 00 00 3F 00 09 @.......?..

000040: 00 04 00 00 48 42 00 0A 00 04 40 1F 00 00 00 0B HB....@.....

000050: 00 04 00 00 00 40 03 EC 00 02 FC FF 03 ED 00 04 @..........

SEE ALSO

xxx, abcd

ps

NAME

ps - show process status

SYNOPSIS

ps [-diag]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ps

UID PID PPID PRI STKAV STATUS IDLE TIME CMD

root 0 -1 1 2340 Schedule 7ms 0000:11:30 [kernel]

root 1 0 15 1244 Ready 78ms 0001:23:02 idle

root 2 0 0 574 Schedule 3ms 0000:28:14 applic

root 3 2 3 906 Sleeping 211ms 0000:01:23 inetd

root 4 2 8 474 Sleeping 4ms 0000:04:09 configd

root 5 2 4 306 Blocked 115ms 0000:02:13 backupd

root 8 3 6 712 Blocked* 17ms 0000:03:32 modbusTCPd

root 47 3 10 386 Sleeping 113ms 0000:00:13 tsh

root 176 47 10 476 Ready 0ms 0000:00:00 ps

root 19 3 10 386 Sleeping 46ms 0000:00:48 tsh

SEE ALSO

xxx, abcd

renice

NAME

renice – change the priority of a running process

SYNOPSIS

renice priority pid

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ps

UID PID PPID PRI STKAV STATUS IDLE TIME CMD

root 0 -1 1 2340 Schedule 20ms 0000:13:59 [kernel]

root 1 0 15 1244 Ready 166ms 0001:36:23 idle

root 2 0 0 574 Schedule 7ms 0000:33:53 applic

root 3 2 3 906 Sleeping 202ms 0000:01:41 inetd

root 4 2 8 474 Blocked 50ms 0000:04:58 configd

root 5 2 4 306 Blocked 59ms 0000:02:41 backupd

root 8 3 6 712 Blocked* 12ms 0000:04:15 modbusTCPd

root 332 47 10 508 Ready 0ms 0000:00:00 ps

root 47 3 10 386 Sleeping 112ms 0000:00:26 tsh

root 272 19 10 602 Sleeping 39ms 0000:00:35 state

root 19 3 10 386 Sleeping 198ms 0000:00:56 tsh

marks-testbox> renice 11 272

SEE ALSO

xxx, abcd

rm

NAME

rm – remove (delete) a file

SYNOPSIS

rm file

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

rm TCPS_xFB_devData.old

SEE ALSO

xxx, abcd

sh

NAME

sh - run commands from a text file

SYNOPSIS

sh fileName

DESCRIPTION

Read a text file and treat each line as if it were typed by the user.

Lines that start with the # character are treated as comments and are ignored.

PARAMETERS:

filename
The name of the text file with the commands to be executed

EXAMPLES

marks-testbox> more /srfs/calibs

adccalib show

readcalib show

daccalib show

setcalib show

marks-testbox> sh /srfs/calibs

ADC calibration data:

 ----Gain---- ---Offset--- ------- Range ------- ------Name------

 0: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 Shunt Volts

 1: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 Supply Volts

 2: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 Trans Bank

 3: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 Load Volts

 4: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 ai04

 5: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 ai05

 6: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 ai06

 7: 304.600E-06 32.7860E+03 -9.987E+00 9.975E+00 ai07

Device Readings calibration data:

 ----Gain---- ---Offset--- ------- Range ------- ------Name------

 0: 1.00000E+00 0.00000E+00 -9.987E+00 9.975E+00 Shunt Volts

 1: 1.00000E+00 0.00000E+00 -9.987E+00 9.975E+00 Supply Volts

 2: 1.00000E+00 0.00000E+00 -9.987E+00 9.975E+00 Trans Bank

 3: 1.00000E+00 0.00000E+00 -9.987E+00 9.975E+00 Load Volts

DAC calibration data:

 ----Gain---- ---Offset--- ------- Range ------- ------Name------

 0: 311.000E-06 32.7680E+03 -10.19E+00 10.19E+00 Control Volts

 1: 311.000E-06 32.7680E+03 -10.19E+00 10.19E+00 ao01

Device Settings calibration data:

 ----Gain---- ---Offset--- ------- Range ------- ------Name------

 0: 1.00000E+00 0.00000E+00 -10.19E+00 10.19E+00 Control Volts

SEE ALSO

xxx, abcd

shutdown

NAME

shutdown - bring the system down

SYNOPSIS

shutdown

DESCRIPTION

Sends a terminate signal to all processes, kills all processes still running after a short delay, and then reboots. After rebooting, the download manager runs but does NOT automatically restart the operating system.

To reboot AND restart the operating system, use the reboot command instead.

OPTIONS

None supported at this time.

EXAMPLES

testbox> shutdown

SEE ALSO

kill, reboot

stat

NAME

stat - show the status of a file

SYNOPSIS

stat fname

DESCRIPTION

Show the size and timestamps for a file.

PARAMETERS:

fname
The name of a local or remote file.

EXAMPLES

marks-testbox> stat TCPS_xFB_devData

 File: `TCPS_xFB_devData`

 Size: 1660

Access: (1248793959) Tue Jul 28 11:12:39 2009

Modify: (1248793959) Tue Jul 28 11:12:39 2009

Change: (1248793959) Tue Jul 28 11:12:39 2009

marks-testbox> stat /srfs/TCPS_xFB_devData

 File: `/srfs/TCPS_xFB_devData`

 Size: 1660

Access: (1248793956) Tue Jul 28 11:12:36 2009

Modify: (1248793959) Tue Jul 28 11:12:39 2009

Change: (1248793959) Tue Jul 28 11:12:39 2009

SEE ALSO

xxx, abcd

tip

NAME

tip - terminal interface program

SYNOPSIS

tip device [speed] [-etx]

DESCRIPTION

Modify the handling of a shell’s stdin and stdout descriptors.

When running, characters sent to the shell’s stdin are written to the specified device rather than the command interpreter. Also, characters read from the specified device are written to the shell’s stdout. The effect is to establish a full-duplex connection between the user of a shell and a given device. Typical usage is to connect a serial port to a device and use tip to communicate with it via a command shell.

PARAMETERS:

device
Usually one of the serial ports (e.g. /dev/tty1)

speed
For serial ports: The bit-rate for sending/receiving bits.

EXAMPLES

tip /dev/tty2 115200

SEE ALSO

getty, lsof, netstat

top

NAME

top - show ongoing process status

SYNOPSIS

top

DESCRIPTION

By default the rows are sorted in descending order of CPU usage. The order can be changed by pressing the following keys:

P – sort by ascending PID (Process ID)

C – sort by ascending Command name

Any other character will return the order to the default (descending CPU usage).

PARAMETERS:

None.

EXAMPLES

2009-07-28 15:23:14 Idle: 47% Control: 100/s [54:00FB] Up: 0d 02:15:16

RW+C: 12%

 PID USER PRI STKAV STATUS IDLE %CPU TIME COMMAND

 1 root 15 1244 Ready 1 34ms 40.9 0001:24:08 idle

 2 root 0 574 Schedule 0 5ms 21.1 0000:28:38 applic

 178 root 10 602 Sleeping 0 113ms 13.5 0000:00:01 state

 0 root 1 2340 Schedule 0 2ms 10.0 0000:11:41 [kernel]

 177 root 10 364 Ready 0 0ms 5.0 0000:00:03 top

 4 root 8 474 Sleeping 0 43ms 4.8 0000:04:12 configd

 8 root 6 712 Blocked* 0 11ms 2.5 0000:03:35 modbusTCPd

 5 root 4 306 Blocked 0 55ms 1.9 0000:02:15 backupd

 3 root 3 906 Sleeping 0 112ms 1.0 0000:01:24 inetd

 19 root 10 386 Sleeping 0 2s 0.4 0000:00:49 tsh

 47 root 10 386 Blocked 0 109ms 0.4 0000:00:13 tsh

SEE ALSO

xxx, abcd

unlink
NAME

unlink - remove (delete) a file

SYNOPSIS

Unlink file

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> unlink TCPS_xFB_devData.old

SEE ALSO

xxx, abcd

uname
NAME

uname - shows version of application and OS code

SYNOPSIS

uname

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> uname

**

 RTOS: Tue Jul 14 2009 11:21:21 Davis Embedded Baby Real-time OS (DEBROS)

 APPL: Wed Jul 22 2009 13:21:27 TCPS

**

SEE ALSO

xxx, abcd

8.3
DEBROS-specific commands common to all applications

adc

NAME

adc - force/unforce a value for one of the Analog/Digital Convertor inputs

SYNOPSIS

adc # [VALUE]

DESCRIPTION

The adc command can be used to override the value normally used by the application code for one of the analog inputs, or to an analog input to normal functionality.

This command is provided for testing and diagnostic use only. Its use on a live controller can have unintended consequences, possibly even damaging equipment.

PARAMETERS:

#:
The index # of the analog input you wish to effect. Indexes for analog inputs begin at 0.

[VALUE]:
If given, the actual voltage reading for the specified input is replaced with the given value. If no value is specified, any previous override is removed and the application will see the actual readings again.

EXAMPLES

marks-testbox> adc 0 1

ADC # 0 now using forced value: 1.000E+00

marks-testbox> adc 0

ADC # 0 no longer using a forced value

SEE ALSO

adccalib, dac, daccalib, ios

adccalib

NAME

adccalib - modify or show board-level calibration data for one or more analog outputs

SYNOPSIS

adccalib all|NAME [-quiet]

adccalib all|NAME defaults [-quiet]

adccalib all|NAME range MIN MAX [-quiet]

adccalib all|NAME GAIN OFFSET [-quiet]

adccalib all|NAME zero [INTERVAL [#SAMPLES]] [-quiet]

adccalib dump

adccalib show

adccalib reload

adccalib save

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

adc, anares, dac, daccalib, ios, label

anares

NAME

anares - Show the current resolution and range for application-level analog readings/settings

SYNOPSIS

anares

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> anares

 Resolution of analog Readings:

 --- Res --- ------- Range ------- ------Name------

 0: 30.64E-03 -62.83E+00 62.64E+00 Oven Read V

 5: 3.164E-03 -6.477E+00 6.479E+00 Oven Read A

 1: 577.7E-03 -1.217E+03 1.149E+03 Bias Read V

 4: 5.015E-03 -10.25E+00 10.29E+00 Bias Read A

 2: 1.069E+00 -2.223E+03 2.153E+03 Sputter Read V

 3: 5.012E-03 12.37E+00 -8.151E+00 Sputter Read A

 Resolution of analog Settings:

 --- Res --- ------- Range ------- ------Name------

 0: 39.91E-03 -416.0E-03 163.0E+00 Oven Set V

 1: 263.7E-03 5.640E+00 -1.074E+03 Bias Set V

 2: 496.0E-03 10.38E+00 -2.021E+03 Sputter Set V

 3: 24.89E-03 177.4E-03 -101.7E+00 RF Gen Set V

SEE ALSO

adc, adccalib, dac, daccalib, ios, label

args

NAME

args – Test parsing of command line arguments

SYNOPSIS

args [ARG …]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

backupd

NAME

backupd - automatic backup/restore daemon

SYNOPSIS

backupd

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

bootimg

NAME

bootimg - show/set which files contain primary/backup boot images

SYNOPSIS

bootimg

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> bootimg

Primary: 129318 2009-07-22 13:22 TCPS-nscl16.bin (active)

Backup: 129318 2009-07-22 13:22 TCPS-nscl16.bak

SEE ALSO

xxx, abcd

cls

NAME

cls - clear the screen

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

configd
NAME

configd - daemon to manage automatic configuration and discovery functionality

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

dac

 dac Force/unforce value for DAC output

NAME

dac - force/unforce a value for a DAC output

SYNOPSIS

dac # [VALUE]
DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

daccalib
NAME

daccalib - modify or show board-level calibration data for one or more analog outputs

SYNOPSIS

daccalib all|NAME [-quiet]

daccalib all|NAME defaults [-quiet]

daccalib all|NAME range MIN MAX [-quiet]

daccalib all|NAME GAIN OFFSET [-quiet]

daccalib all|NAME zero [INTERVAL [#SAMPLES]] [-quiet]

daccalib dump

daccalib show

daccalib reload

daccalib save

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

del

 del remove (delete) a file

NAME

del - remove (delete) a file

SYNOPSIS

del FILE

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

diag
NAME

diag - modify or view settings for diagnostic output flags

SYNOPSIS

usage: diag msgs pid|all|name|new [#|+#|-#|+name|-name] ...

 crc

 Symbolic names for diagnostic flag bits:

 all 0xffffffff

 debug 0x00000800

 err 0x00000100

 event 0x00001000

 file 0x00000400

 rw 0x00002000

 sock 0x00000200

usage: diag events name|all bits

 Supported events:

ApplLoop

Scheduler

KernelLock

TimerISR

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> diag msgs all

 PID BITS CMD

 0 0x00000000 [kernel]

 1 0x00000000 idle

 2 0x00000000 applic

 3 0x00000000 inetd

 4 0x00000000 configd

 5 0x00000000 backupd

 486 0x00000000 diag

 8 0x00000100 modbusTCPd

 47 0x00000000 tsh

 19 0x00000000 tsh

marks-testbox> diag msgs 8 sock

 8 0x00000200 modbusTCPd

marks-testbox> diag msgs 8 -sock

 8 0x00000000 modbusTCPd

marks-textbox> diag crc

....

Segment Start End CRC

-------- ----- ----- ----

CODE 00000 033A0 6B2C

CONST 033A1 04307 D204

FARCODE 0E000 47BF8 324B

FARCONST 5544A 5D53C EC60
SEE ALSO

xxx, abcd

dig
NAME

dig - manual control of digital inputs and outputs

SYNOPSIS

dig in|out|extra <cycle [wait]>|<#|all 0|1>

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> label di

 di 0: Ctl Power Off

 di 1: Water Flow Bad

 di 2: Temp. Bad

 di 3: Trans Fuses Bad

 di 4: Interlocks

 di 5: PS Off Asserted

 di 6: Overload

 di 7: OFF Pressed

 di 8: DI-08

 di 9: DI-09

 di 10: Ext Interlock

 di 11: PS is OFF

marks-testbox> dig in 1 1

DI-01 (Water Flow Bad) forced to 1

marks-testbox> dig in 1

DI-01 (Water Flow Bad) no longer forced

SEE ALSO

xxx, abcd

dumport
NAME

dumpport - diagnostic command to show data from the serial port structure

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> dumpport 0

Port: 0 at [6177], dev at [9630]

 dPort: c0

 sPort: c0

 InQueue:

 in: [61d7]

 out: [61d7]

 start: [61d7]

 end: [63d7]

 start_int: [0000]

 end_int: [0000]

 flags: [0000]

 OutQueue:

 in: [6a82]

 out: [6a82]

 start: [69d7]

 end: [6ad7]

 start_int: [0000]

 end_int: [0000]

 flags: [0000]

 getc(): [2a77]

 putc(): [2a84]

SEE ALSO

xxx, abcd

eng

NAME

eng - diagnostic command to test engineering/scientific formatting of floating point values

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> eng 12345.6789 5

 12.346E+03

SEE ALSO

xxx, abcd

fifoClient
NAME

fifoClient - command to test client (write) access to a FIFO file/buffer

SYNOPSIS

fifoClient FIFONAME

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> fifoClient fifotest

fd: 3

This was typed in to the client side...

SEE ALSO

xxx, abcd

fifoServ

 fifoServ FIFO test Server

NAME

fifoServ - diagnostic command to create a FIFO and test server side (read) access

SYNOPSIS

fifoServer fifoName

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> fifoServ fifotest

fd: 3

This was typed in to the client side...

SEE ALSO

xxx, abcd

float

NAME

float - diagnostic command to test fast floating point functions

SYNOPSIS

float [# [#]]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> float 1234.5678 785734933e-18

Softools took 46 microsecs / float mult

FastFloat took 18 microsecs / float mult

 1.234568E+03 [449A522C] * 785.7347E-12 [3057FB2E]

Softools: 970.0429E-09 [3582326D]

IntFloat: 970.0429E-09 [3582326D]

SEE ALSO

xxx, abcd

hang

NAME

hang - diagnostic command to test WatchDog timer reboot

SYNOPSIS

hang lock|jump0|cstart

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

help

NAME

help - show summary list of commands

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> help

System commands:

 adc Force/unforce value for ADC reading

 adccalib Ctlr-specific Analog input calibrations

 anares Show current res of analog read/set signals

 args Test parsing of cmd line arguments

 arp Show arp table

 backupd Automatic backup/restore daemon

 bootimg Show/Set Primary/Backup boot image

 cat Copy file to stdout

 cls Clear the screen

 configd Automatic Configuration daemon

 cp Copy a file

 dac Force/unforce value for DAC output

 daccalib Ctlr-specific Analog output calibrations

 date show date/time

 del remove (delete) a file

 dig Digital I/O cmds

 df show free space on file system

 dumpport show values from serial port struct

 eng test Engineering() floating formatter

 diag Show/Set diagnostic output flags

 dir List files

 exit Exit shell

 fifoClient FIFO test client

 fifoServ FIFO test Server

 float Test of alternate floating point funcs

 free How much xmem is avail

 fsck check integrity of the file system

 getty Start login shell on serial device

 hang Test WatchDog timer reboot

 help List commands

 hex show data in hex format

 hostname set/show hostname

 ifconfig Show/set network interface config

 inetd Internet 'super-server'

 ios Digital/Analog I/O status

 kill Send a Signal to a process

 label Set/show input/output signal labels

 ls List files

 lsof List open file descriptors

 more show a file or stdin a page at a time

 mv move (rename) a file

 netstat Show network connections

 od Octal Dump (copy/translate data)

 ps Process Status

 rdflash Read data from flash

 rdmem Read data from memory

 readcalib Device-specific Analog input calibrations

 reboot Shutdown and restart OS

 reg List or modify Modbus Registers

 reload reload 'persistent' values from file(s)

 renice Change priority of running process

 rm remove (delete) a file

 save save 'persistent' values to file(s)

 setcalib Device-specific Analog output calibrations

 scope Capture/display waveform data

 sh Run commands from a text file

 shutdown Shutdown and run Download Manager

 srfs Set/Show SRFS service parameters

 stat Show file status

 sysinfo Hardware/System information

 syslog Show new diagnostic/system log

 testOut Test continuous output

 testgets Test gets()

 tip Terminal Interface Program

 top Continuous process status

 unlink remove (delete) a file

 uname Description of Operating System

 update Update Boot Image file

 watch Monitor the value of one or more regs

Application commands:

 cmd Application-specific commands

 state Show state of controller

SEE ALSO

xxx, abcd

hex

NAME

hex - show a portion of a file in hex and ASCII format

SYNOPSIS

hex file [offset [count]]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> hex TCPS-nscl16.bin 0 0x80

000000: 4C 5A 37 37 EB 75 1C F9 01 00 2F C3 88 00 FF F1 LZ77.u..../.....

000010: F9 C9 F7 FC 0D 0F 82 F1 F3 AF 06 0F 38 0F 4A 0F 8.J.

000020: 5C 0F F1 F4 C7 FF 00 E0 F7 C3 38 00 FD E1 EF CF \.........8.....

000030: 70 E3 F8 7D 00 C4 E0 2A 6E 7D 00 EC E4 FA 7D 00 p..}...*n}....}.

000040: A8 E7 8E 01 BB 40 EA 8E 01 8C E1 FB 7D 00 F4 B6 @......}...

000050: 9F 02 D8 E2 A0 01 0C E3 A0 01 68 5A B1 02 C4 B1 hZ....

000060: 02 30 E4 A0 01 9C C3 02 D7 DC E3 FC 7D 00 3C 9F .0..........}.<.

000070: 02 04 ED DC D0 01 80 03 B8 E1 03 7D 00 10 E8 DD }....

SEE ALSO

xxx, abcd

ios

NAME

ios - show current state of analog/digital inputs and outputs (i/o states)

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> ios

(The default or ‘S’tandard format):
2009-07-28 15:02:59 Idle: 52% Control: 100/s [54:00FB] Up: 0d 01:55:00

ADC: 0.57ms DAC: 0.03ms RW+C: 1.22ms Knob: 2 ExtraIN: [0000]

------- ADC ------- ------- DAC ------- -- DIN -- -- DOUT –

 0. 9.9753 (FFFF) 0. 0.0000 (8000) 0. 0 0. 1

 1. 9.9753 (FFFF) 1. 0.0000 (8000) 1. 0 1. 1

 2. 9.9753 (FFFF) 2. 0 2. 1

 3. 9.9753 (FFFF) 3. 0 3. 1

 4. --OFF-- (8000) 4. 0 4. 1

 5. --OFF-- (8000) 5. 0 5. 1

 6. --OFF-- (8000) 6. 0 6. 1

 7. --OFF-- (8000) 7. 0 7. 1

 8. 0 8. 1

 9. 0 9. 1

 10. 0 10. 1

 11. 0

(The ‘A’nalog format):

2009-07-28 15:03:32 Idle: 55% Control: 100/s [54:00FB] Up: 0d 01:55:33

ADC: 0.57ms DAC: 0.03ms RW+C: 1.22ms Knob: 2 ExtraIN: [0000]

----- Analog Inputs ----- ----- Analog Outputs -----

 0. 9.9753 (FFFF) Shunt Volts (V) 0. 0.0000 (8000) Control Volts

 1. 9.9753 (FFFF) Supply Volts (V)

 2. 9.9753 (FFFF) Trans Bank (V)

 3. 9.9753 (FFFF) Load Volts (V)

(The ‘N’oise format):

2010-02-24 09:56:06 Idle: 53% Control: 100/s [52:00F9] Up: 4d 18:06:53

ADC: 0.54ms DAC: 0.03ms RW+C: 1.40ms Knob: 0 ExtraIN: [0000]

----- Analog (ADC) Input Levels ----- -------- Read Noise ---------

 0. -0.0024 (800A) RF_Cavity (V) 4 (2.0 bits) 24.37E-03

 1. -9.9866 (0000) Limiter (V) 0 (0.0 bits) 0.000E+00

 2. 0.0466 (80AB) <unused> (V) 4 (2.0 bits) 1.218E-03

 3. 3.8407 (B153) HdwConfig (V) 42 (5.4 bits) 12.79E-03
2009-07-28 15:08:20 Idle: 52% Control: 100/s [54:00FB] Up: 0d 02:00:21

(The ‘D’igital format):

ADC: 0.57ms DAC: 0.03ms RW+C: 1.22ms Knob: 2 ExtraIN: [0000]

----- Digital Inputs ----- ----- Digital Outputs -----

 0. 0 Ctl Power Off 0. 1 Variac Up OFF

 1. 0 Water Flow Bad 1. 1 Variac Down OFF

 2. 0 Temp. Bad 2. 1 Allow Intlks

 3. 0 Trans Fuses Bad 3. 1 Mech Rev Pol

 4. 0 Interlocks 4. 1 Turn PS Off

 5. 0 PS Off Asserted 5. 1 DO-05

 6. 0 Overload 6. 1 DO-06

 7. 0 OFF Pressed 7. 1 DO-07

 8. 0 DI-08 8. 0 Activity LED

 9. 0 DI-09 9. 1 SCR Plus Pol Off

10. 0 Ext Interlock 10. 1 SCR Neg Pol Off

11. 0 PS is OFF

SEE ALSO

xxx, abcd

label

NAME

label - set/show labels for input/output signals

SYNOPSIS

label ai|ao|di|do|defaults [# new_label]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> label ai

 ai 0: Shunt Volts

 ai 1: Supply Volts

 ai 2: Trans Bank

 ai 3: Load Volts

SEE ALSO

xxx, abcd

rdflash

NAME

rdflash - show a portion of flash memory in hex and ASCII format

SYNOPSIS

rdflash offset [count]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> rdflash 0 0xa0

sectorSize: 4096, endOfFlash: 524288

000000: C3 00 08 FF FF FF FF FF FF FF FF FF FF FF FF FF

000010: C9 FF FF FF FF FF FF FF C9 FF FF FF FF FF FF FF

000020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000030: FF FF FF FF FF FF FF FF AF C9 FF FF FF FF FF FF

000040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000060: 53 49 42 4D 27 76 8D 01 01 00 13 00 90 C2 C8 59 SIBM'v.........Y

000070: 5E 00 00 00 00 00 00 D7 BF 01 00 00 02 80 00 00 ^...............

000080: 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF

000090: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

SEE ALSO

xxx, abcd

rdmem

NAME

rdmem - show a portion of RAM in hex and ASCII format

SYNOPSIS

rdmem offset [count] [-crc]
DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> rdmem 0 0xa0

000000: C3 88 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

000010: C9 FF FF FF FF FF FF FF C9 FF FF FF FF FF FF FF

000020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000030: FF FF FF FF FF FF FF FF AF C9 FF FF FF FF FF FF

000040: FF FF FF FF FF FF FF FF C6 FF FF FF FF FF FF FF

000050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000060: 53 49 42 4D 27 76 8D 01 01 00 13 00 90 C2 C8 59 SIBM'v.........Y

000070: 5E 00 00 00 00 00 00 D7 BF 01 00 00 02 80 00 00 ^...............

000080: 00 00 00 00 00 00 00 FF C7 00 E0 F7 C3 38 00 FD 8..

000090: E1 CF 70 E3 F8 FD E1 CF C4 E0 2A FD E1 CF EC E4 ..p.......*.....

marks-textbox> rdmem 0 0xa0 -crc

CRC: 0x468B
SEE ALSO

xxx, abcd

readcalib

 readcalib Device-specific Analog input calibrations

NAME

readcalib - modify or show device-level calibration data for one or more analog inputs

SYNOPSIS

readcalib all|NAME [-quiet]

readcalib all|NAME defaults [-quiet]

readcalib all|NAME range MIN MAX [-quiet]

readcalib all|NAME GAIN OFFSET [-quiet]

readcalib all|NAME zero [INTERVAL [#SAMPLES]] [-quiet]

readcalib dump

readcalib show

readcalib reload

readcalib save

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

reboot

NAME

reboot - shutdown and restart the OS

SYNOPSIS

reboot [soft] [backup]
DESCRIPTION

Roughly the equivalent of the Linux/Unix command: “shutdown now –r”. This does a clean shutdown of the OS and causes the primary or backup boot image to be (re)loaded from flash and (re)started.
For application code that supports it, the soft option avoids an actual CPU reset by simply jumping to address 0 after shutting down the OS. This has the advantage of leaving the state of all the I/O signals unchanged, making it possible for applications to simply pick up where they left off after the restart (NOTE that, while much of the needed support is handled by the generic code shared by all applications, it will only work as intended if the application itself supports this capability).

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

reg

NAME

reg - list or modify Modbus-accessible values at runtime

SYNOPSIS

reg [name [newValue]]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> reg

00001 DoReboot 0

30001#U32 dlmVersTime 0 (0x00000000)

30003#U32 rtosVersTime 1247570481 (0x4a5c6a31)

30005#U32 applVersTime 1248268887 (0x4a671257)

30007#U16 devType_ 84 (0x0054)

30008#U32 deviceID_ 251 (0x000000fb)

30010#U32 upSecs 7746 (0x00001e42)

30012#U16 percentIdle_ 61 (0x003d)

30013#U16 numChans 0 (0x0000)

30014#U16 coilChanMult 0 (0x0000)

30015#U16 reg3ChanMult 0 (0x0000)

30016#U16 reg4ChanMult 0 (0x0000)

30017#U32 digInBits 0 (0x00000000)

30019#U16 statusBitsStdA 0 (0x0000)

30020#U16 statusBitsStdB 0 (0x0000)

30021#U32 statusBitsAppl 0 (0x00000000)

30023#U16 latency 0 (0x0000)

30024#U16 tcpTickTime 2 (0x0002)

30025#U16 applLoopTime 2 (0x0002)

40001#S16 timeZone_ -4 (0xfffc)

40002#U32 curTime 1248808623 (0x4a6f4eaf)

40004#U32 ipAddr 0 (0x00000000)

40006#U32 netmask 0 (0x00000000)

40008#U32 gateway 0 (0x00000000)

40010#U16 setACoil 0 (0x0000)

40011#U16 resetACoil 0 (0x0000)

40012#U32 digOutBits 4294967295 (0xffffffff)

40014#U32 cmdBitsStd 0 (0x00000000)

40016#U32 cmdBitsAppl 0 (0x00000000)

40018#F ampSet 0.00000E+00 (0x00000000)

40020#U16 switchType 1 (0x0001)

40021#U16 devStatus 0 (0x0000)

40022#F loadAmps 9.97534E+00 (0x411f9b03)

40024#F loadVolts 9.97534E+00 (0x411f9b03)

marks-testbox> reg rampRate 40

set rampRate[0] = 40: OK

SEE ALSO

xxx, abcd

reload

NAME

reload - reload ‘persistent’ values from file(s)

SYNOPSIS

reload <baseName>|all

 valid baseName's:

 settings

 devData

 hdwcfg

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> reload devdata

Load parameter file: TCPS_xFB_devData

 restoring: switchType

 restoring: maxVolts

 restoring: maxAmps

 restoring: safeSwAmps

 restoring: connectLoadDelay

 restoring: biasVoltsSet

 restoring: biasErrorStart

 restoring: biasErrorStop

 restoring: rampRate

 restoring: switchTime

 restoring: readPolThresh

 restoring: timeZone

 restoring: srfsIPAddr

 restoring: ainLabel

 restoring: aoutLabel

 restoring: dinLabel

 restoring: doutLabel

 restoring: readGain

 restoring: readOffset

 restoring: setGain

 restoring: setOffset

 restoring: hostName

 restoring: srfsAltAddr

 restoring: extraInLabel

SEE ALSO

xxx, abcd

save
NAME

save - save ‘persistent’ values to file(s)

SYNOPSIS

save <baseName>|all

 valid baseName's:

 settings

 devData

 hdwcfg

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> save devdata

Updating parameter file: TCPS_xFB_devData

SEE ALSO

xxx, abcd

setcalib

NAME

setcalib - modify or show device-level calibration data for one or more analog outputs

SYNOPSIS

setcalib all|NAME [-quiet]

setcalib all|NAME defaults [-quiet]

setcalib all|NAME range MIN MAX [-quiet]

setcalib all|NAME GAIN OFFSET [-quiet]

setcalib all|NAME zero [INTERVAL [#SAMPLES]] [-quiet]

setcalib dump

setcalib show

setcalib reload

setcalib save

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

testbox> abcd abcd

SEE ALSO

xxx, abcd

scope

NAME

scope - capture and buffer a set of values for access by external client processes

SYNOPSIS

scope #secs regName [regName ...]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> scope 10 biasVolts psVolts

Bytes per sample: 16, Max Secs: 20

Allocated 16000 bytes at 354677

670

SEE ALSO

xxx, abcd

state
NAME

state - show the current state of the application logic

SYNOPSIS

xxx abcd [xxx]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

2009-07-28 15:19:47 Idle: 51% Control: 100/s [54:00FB] Up: 0d 02:11:49

---- Digital In ---- -- Digital Out -- ------ Raw ADC -----

Extern Power: ON Variac Up: OFF Shunt Volts: 9.975

Water Flow: OK Variac Down: OFF Supply Volt: 9.975

Temperature: OK Reset Intlk: NO Trans.BankV: 9.975

Trans. Fuses: OK Polarity: [-] Output Volt: 9.975

Interlocks: OK Assert ON: NO ------ Raw DAC -----

ON Asserted: YES Output Ctl: 0.000

Overloads: OK ---- Transistor Bias ----

OFF Button: NORMAL Reading: 9.97 V ------- Scaled -------

 Setpoint: 10.00 V Setpoint: 0.00 A

ExtInterlock: NO Error: -0.02 V Shunt Curr: 9.97 A

PS Status: ON ---- Error Threshold ---- PS Voltage: 9.97 V

 Start Correction: 2.00 V Output Volts: 9.97 V

Sw.Type: MOTOR Stop Correction: 0.50 V

Sw.State: ON

Ctl.State: OFF

SEE ALSO

xxx, abcd

srfs

NAME

srfs - set/show IP address of SRFS server

SYNOPSIS

srfs [newSrvAddr]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> srfs

192.168.125.201

SEE ALSO

xxx, abcd

sysinfo

NAME

sysinfo - show hardware and system information

SYNOPSIS

sysinfo

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> sysinfo

ID Block vers: 1

ID Block size: 39

Board ID: 0x1300

MAC Addr: 00:90:c2:c8:59:5e

Flash0:

 Part ID: 0xBFD7

 Write method: Byte

 Size: 512K

 Sectors: 128

took 46 microsecs / float mult

using floats: took 79 microsecs / ADC conversion

SEE ALSO

xxx, abcd

syslog

NAME

syslog - show recent and new messages written to the system log

SYNOPSIS

syslog

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

***** Restored previous log *****

Module C8595E was last running at: 2009-07-28 12:58:38.152

This reboot was expected

**

 RTOS: Tue Jul 14 2009 11:21:21 Davis Embedded Baby Real-time OS (DEBROS)

 APPL: Wed Jul 22 2009 13:21:27 TCPS

**

2009-07-28 13:08:05.049 [kernel][0]: Initializing... (C8595E)

2009-07-28 13:08:05.057 [kernel][0]: Initializing network hdw...

2009-07-28 13:08:09.380 [kernel][0]: Socket lib allocated 61000 bytes

2009-07-28 13:08:09.388 [kernel][0]: Free memory: 334737

2009-07-28 13:08:09.396 [kernel][0]: Allocated 27300 bytes for stacks [0x6A309]-

[0x70DAC]

2009-07-28 13:08:09.484 [kernel][0]: Device ID: 0x00FB

2009-07-28 13:08:09.491 [kernel][0]: Flash Sector Size: 4096

2009-07-28 13:08:09.537 [kernel][0]: in-flash CONFIG_TABLE found at: 0xF000

2009-07-28 13:08:09.547 [kernel][0]: spiPort: 618F (1)

2009-07-28 13:08:09.554 [kernel][0]: IIR: 94, EIR: 95

2009-07-28 13:08:09.562 [kernel][0]: _TimerBISR: 04B5

2009-07-28 13:08:09.569 [kernel][0]: INT 00: 1AC3

2009-07-28 13:08:09.576 [kernel][0]: INT 01: 1AC3

2009-07-28 13:08:09.583 [kernel][0]: INT 02: 1AC3

2009-07-28 13:08:09.590 [kernel][0]: INT 03: 1AC3

2009-07-28 13:08:09.598 [kernel][0]: INT 04: 1AC3

2009-07-28 13:08:09.605 [kernel][0]: INT 05: 1AC3

2009-07-28 13:08:09.612 [kernel][0]: INT 06: 1AC3

2009-07-28 13:08:09.619 [kernel][0]: INT 07: 1AC3

2009-07-28 13:08:09.626 [kernel][0]: INT 08: 1AC3

2009-07-28 13:08:09.633 [kernel][0]: INT 09: 1AC3

2009-07-28 13:08:09.641 [kernel][0]: Created process #1 (idle)

2009-07-28 13:08:09.653 [kernel][0]: Created process #2 (applic)

2009-07-28 13:08:09.678 applic[2]: applic process started

2009-07-28 13:08:09.685 applic[2]: Scanning Modbus register tables...

2009-07-28 13:08:09.695 applic[2]: Register counts:

2009-07-28 13:08:09.701 applic[2]: C0Coils: 1

2009-07-28 13:08:09.708 applic[2]: R3Regs: 25

2009-07-28 13:08:09.715 applic[2]: R4Regs: 49

2009-07-28 13:08:09.722 applic[2]: Setting default labels for I/O signals

2009-07-28 13:08:09.732 applic[2]: Setting in-RAM device config to default value

s

2009-07-28 13:08:09.743 applic[2]: Load parameter file: TCPS_xFB_settings

2009-07-28 13:08:09.762 applic[2]: restoring: ampSet

2009-07-28 13:08:09.770 applic[2]: New Setpoint: 0.000

2009-07-28 13:08:09.779 applic[2]: Load parameter file: TCPS_xFB_devData

2009-07-28 13:08:09.798 applic[2]: restoring: switchType

2009-07-28 13:08:09.807 applic[2]: restoring: maxVolts

2009-07-28 13:08:09.815 applic[2]: restoring: maxAmps

2009-07-28 13:08:09.823 applic[2]: restoring: safeSwAmps

2009-07-28 13:08:09.831 applic[2]: restoring: connectLoadDelay

2009-07-28 13:08:09.840 applic[2]: restoring: biasVoltsSet

2009-07-28 13:08:09.848 applic[2]: restoring: biasErrorStart

2009-07-28 13:08:09.857 applic[2]: restoring: biasErrorStop

2009-07-28 13:08:09.865 applic[2]: restoring: rampRate

2009-07-28 13:08:09.874 applic[2]: restoring: switchTime

2009-07-28 13:08:09.882 applic[2]: restoring: readPolThresh

2009-07-28 13:08:09.891 applic[2]: restoring: timeZone

2009-07-28 13:08:09.899 applic[2]: restoring: srfsIPAddr

2009-07-28 13:08:09.907 applic[2]: restoring: ainLabel

2009-07-28 13:08:09.915 applic[2]: restoring: aoutLabel

2009-07-28 13:08:09.924 applic[2]: restoring: dinLabel

2009-07-28 13:08:09.936 applic[2]: restoring: doutLabel

2009-07-28 13:08:09.948 applic[2]: restoring: readGain

2009-07-28 13:08:09.956 applic[2]: restoring: readOffset

2009-07-28 13:08:09.965 applic[2]: restoring: setGain

2009-07-28 13:08:09.973 applic[2]: restoring: setOffset

2009-07-28 13:08:09.985 applic[2]: restoring: hostName

2009-07-28 13:08:09.993 applic[2]: restoring: srfsAltAddr

2009-07-28 13:08:10.002 applic[2]: restoring: extraInLabel

2009-07-28 13:08:10.021 applic[2]: hdwcfg: No such file or directory

2009-07-28 13:08:10.031 applic[2]: ===== Initial Digital Input states =====

2009-07-28 13:08:10.041 applic[2]: Control Power On

2009-07-28 13:08:10.047 applic[2]: Water Flow OK

2009-07-28 13:08:10.054 applic[2]: Temp OK

2009-07-28 13:08:10.060 applic[2]: Fuses OK

2009-07-28 13:08:10.066 applic[2]: Interlock cleared

2009-07-28 13:08:10.073 applic[2]: ON bit asserted

2009-07-28 13:08:10.080 applic[2]: No Overloads

2009-07-28 13:08:10.087 applic[2]: OFF Btn released

2009-07-28 13:08:10.094 applic[2]: Ext Intlk Cleared

2009-07-28 13:08:10.101 applic[2]: PS is ON

2009-07-28 13:08:10.107 applic[2]: ===== Initial Digital Output states =====

2009-07-28 13:08:10.117 applic[2]: Stop Variac UP

2009-07-28 13:08:10.123 applic[2]: Stop Variac Down

2009-07-28 13:08:10.130 applic[2]: Start Reset pulse

2009-07-28 13:08:10.137 applic[2]: Move to [+] polarity

2009-07-28 13:08:10.145 applic[2]: Assert PS OFF

2009-07-28 13:08:10.152 applic[2]: Disable [+] polarity

2009-07-28 13:08:10.159 applic[2]: Disable [-] polarity

2009-07-28 13:08:10.168 applic[2]: Bringing up network interface...

2009-07-28 13:08:10.188 applic[2]: Network ready

2009-07-28 13:08:10.200 applic[2]: eth0 Link encap:Ethernet HWaddr 00:90:c

2:c8:59:5e

2009-07-28 13:08:10.211 applic[2]: inet addr:192.168.250.251 Bcast:25

5.255.255.255 Mask:255.255.0.0

2009-07-28 13:08:10.223 applic[2]: UP BROADCAST MTU:1500

2009-07-28 13:08:10.236 applic[2]: Created process #3 (inetd)

2009-07-28 13:08:10.248 applic[2]: Created process #4 (configd)

2009-07-28 13:08:10.261 applic[2]: Created process #5 (backupd)

2009-07-28 13:08:10.273 applic[2]: free memory: 299411

2009-07-28 15:23:01.363 tsh[19]: Created process #178 (state)

2009-07-28 15:23:01.387 tsh[19]: blocking on state[178]

2009-07-28 15:25:46.225 top[177]: exiting with status: -3, 364 stack free

2009-07-28 15:25:46.245 top[177]: killing process top[177]

2009-07-28 15:25:46.324 tsh[47]: unblocked

2009-07-28 15:25:48.176 tsh[47]: Cmd: netstat

2009-07-28 15:25:48.191 tsh[47]: Created process #198 (netstat)

2009-07-28 15:25:48.206 tsh[47]: blocking on netstat[198]

2009-07-28 15:25:48.295 netstat[198]: exiting with status: 0, 854 stack free

2009-07-28 15:25:48.316 netstat[198]: killing process netstat[198]

2009-07-28 15:25:48.353 tsh[47]: unblocked

2009-07-28 15:29:11.093 tsh[47]: Cmd: syslog

2009-07-28 15:29:11.103 tsh[47]: Created process #199 (syslog)

2009-07-28 15:29:11.130 tsh[47]: blocking on syslog[199]

SEE ALSO

xxx, abcd

testOut
NAME

testOut - diagnostic command to test handling of stdout descriptor and effect of scheduling

SYNOPSIS

testOut [write] [nokill] [#sleepMS]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> testOut

==========-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 1-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 2-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 3-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 4-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 5-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 6-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 7-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 8-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 9-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 10-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 11-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 12-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 13-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 14-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 15-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 16-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 17-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 18-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 19-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 20-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 21-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 22-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 23-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 24-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 25-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 26-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 27-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 28-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 29-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 30-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 31-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

==========-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 33-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 34-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 35-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

 36-23456789.123456789.123456789.123456789.123456789.123456789.123456789.

SEE ALSO

xxx, abcd

testgets

NAME

testgets - diagnostic command to test DEBROS use of gets() function

SYNOPSIS

testgets

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> testgets

abc

[]

SEE ALSO

xxx, abcd

update

NAME

update - update the primary boot image file

SYNOPSIS

update [-t] [-r] [bootImgFile.bin]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> update -t

Primary: 129318 2009-07-22 13:22 TCPS-nscl16.bin (active)

Backup: 129318 2009-07-22 13:22 TCPS-nscl16.bak

Download: 129318 2009-07-22 13:22 /srfs/test/TCPS-nscl16.bin

 129318

Primary: 129318 2009-07-22 13:22 TCPS-nscl16.bin

Backup: 129318 2009-07-22 13:22 TCPS-nscl16.bak (active)

SEE ALSO

xxx, abcd

watch

NAME

watch - Monitor the value of one or more registers

SYNOPSIS

watch regName [regName ...]

DESCRIPTION

Xxx

xxx

PARAMETERS:

xxx:
xxx.

[xxx]:
xxx

EXAMPLES

marks-testbox> watch time

2009-07-28 15:36:20 Idle: 41% Control: 100/s [54:00FB] Up: 0d 02:28:22

30001#U32 dlmVersTime 0 (0x00000000)

30003#U32 rtosVersTime 1247570481 (0x4a5c6a31)

30005#U32 applVersTime 1248268887 (0x4a671257)

30024#U16 tcpTickTime 1 (0x0001)

30025#U16 applLoopTime 2 (0x0002)

40001#S16 timeZone_ -4 (0xfffc)

40002#U32 curTime 1248809783 (0x4a6f5337)

40046#U32 switchTime 8000 (0x00001f40)

SEE ALSO

xxx, abcd

9.0
System calls

The following functions are all based on standard Linux/Unix functions. With few exceptions, the names and parameter types are the same. However, the full functionality as described in the Linux manual pages is not implemented for many functions, so be sure to read the descriptions here before assuming the capability you are looking for has been implemented. There are also some differences in which header files you need to include in your code.

Just to be absolutely clear here: These functions provide only SOME of the functionality available on Linux and Unix systems. The statement “DEBROS is compatible with Linux and Unix” means that code that works in DEBROS should work with very few changes on a Linux or Unix system. It does NOT mean that you can simply take code that works on Linux or Unix and expect it to work on DEBROS without changes or limitations. The fact that the parameters are the same means that code that uses only functions supported by DEBROS may compile without error (once any differences in header file names are dealt with), but if the code assumes or requires functionality not yet supported by DEBROS then it may very well fail to function.

Remember the goal of DEBROS is not to provide a full-fledged Linux or Unix OS on a Rabbit module. That simply isn’t practical. What it DOES provide is a degree of portability with Linux and Unix, particularly when porting code written for DEBROS to a Linux or Unix system.

The descriptions given here are based on the actual Linux manual pages. For the most part, I started with the Linux man page for each, stripped out the portions containing descriptions of functionality not yet implemented in DEBROS, and modified what was left as needed.

9.1
fcntl, ioctl, stat, unistd, utime, wait functions

close

NAME

close - close a file descriptor

SYNOPSIS

#include <fcntl.h>

int close(int fd);

DESCRIPTION

close closes a file descriptor, so that it no longer refers to any file and may be reused.

If fd is the last copy of a particular file descriptor the resources associated with it are freed.

RETURN VALUE

close returns zero on success, or -1 if an error occurred.
ERRORS

EBADF fd isn't a valid open file descriptor.

EINTR The close() call was interrupted by a signal.

EIO An I/O error occurred.

NOTES

Not checking the return value of close is a common but nevertheless serious programming error. It is quite possible that errors on a previous write operation are first reported at the final close. Not checking the return value when closing the file may lead to silent loss of data.

A successful close does not guarantee that the data has been successfully saved to disk, as the kernel defers writes. It is not common for a filesystem to flush the buffers when the stream is closed.
SEE ALSO

fcntl, open, shutdown, unlink

dup2

NAME

dup2 - duplicate a file descriptor

SYNOPSIS

#include <fcntl.h>

fd_t dup2(fd_t oldfd, fd_t newfd);

DESCRIPTION

dup2 creates a copy of the file descriptor oldfd.

After successful return of dup2, the old and new descriptors may be used interchangeably. They share locks, file position pointers and flags; for example, if the file position is modified by using lseek on one of the descriptors, the position is also changed for the other.

dup2 makes newfd be the copy of oldfd, closing newfd first if necessary.

RETURN VALUE

dup2 returns the new descriptor, or -1 if an error occurred (in which case, errno is set appropriately).
ERRORS

EBADF oldfd isn't an open file descriptor, or newfd is out of the allowed range for file descriptors.

EMFILE The process already has the maximum number of file descriptors open and tried to open a new one.

NOTES

If newfd was open, any errors that would have been reported at close() time, are lost. A careful programmer will not use dup2 without closing newfd first.

SEE ALSO

close, fcntl, open

fcntl

NAME

fcntl - manipulate file descriptor

SYNOPSIS

#include <fcntl.h>

int fcntl(fd_t fd, int cmd, int arg);

DESCRIPTION

fcntl performs one of various miscellaneous operations on fd. The operation in question is determined by cmd.

The only cmd values currently supported by DEBROS are the ones to read and set the flags associated with the file descriptor.

The file status flags

A file descriptor has certain associated flags, initialized by open and possibly modified by fcntl. The flags are shared between copies (made with dup2, etc.) of the same file descriptor.

The flags and their semantics are described in open.

F_GETFL

Read the file descriptor's flags.

F_SETFL

Set the file status flags part of the descriptor's flags to the value specified by arg. Remaining bits (access mode, file creation flags) in arg are ignored.

RETURN VALUE

For a successful call, the return value depends on the operation:

F_GETFD Value of flag.

F_GETFL Value of flags.

On error, -1 is returned, and errno is set appropriately.
ERRORS

EBADF
fd is not an open file descriptor.

EINVAL Unrecognized or unsupported value for cmd.

NOTES

The effect of this call is dependent upon the driver that the descriptor represents. The only bits that are handled independently of most drivers are O_RDONLY, O_WRONLY, O_RDWR, and O_NONBLOCK.

SEE ALSO

dup2, open, socket

gethostname, sethostname, SetHostName

NAME

gethostname, sethostname, SetHostName - get/set host name

SYNOPSIS

#include <unistd.h>

char *gethostname(char *name, int len); (in Softools library)

char *sethostname(char *name); (in Softools library)

int SetHostName(char *name, int nameLen);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

mkfifo

NAME

mkfifo - create a FIFO (a named, one-way pipe)

SYNOPSIS

#include <sys/stat.h>

int mkfifo(const char *path, int mode);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

ioctl

NAME

ioctl - control device

SYNOPSIS

#include <fcntl.h>

int ioctl(int fd, int request, void *arg);

DESCRIPTION

The ioctl function manipulates the underlying device parameters of special files. In particular, many operating characteristics of character special files (e.g. terminals) may be controlled with ioctl requests.

The argument fd must be an open file descriptor.

The second argument is a device-dependent request code. The third argument is an untyped pointer to memory. It's traditionally char *argp (from the days before void * was valid C), and will be so named for this discussion.

An ioctl request has encoded in it whether the argument is an in parameter or out parameter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl request are located in the file <fcntl.h>.

RETURN VALUE

Usually, on success zero is returned. A few ioctls use the return value as an output parameter and return a nonnegative value on success.

On error, -1 is returned, and errno is set appropriately.
ERRORS

EBADF
fd is not an open file descriptor.

EINVAL request or argp is not valid or is not recognized by the driver represented by the opened descriptor.

NOTES

While the call format is fairly standard, the values and meaning of the values for request can differ greatly from system to system. Checking the return code and the value of errno after calling this is the least you should do to help lessen this problem.

SEE ALSO

fcntl, open

isatty

NAME

isatty - does the descriptor refer to a terminal

SYNOPSIS

#include <fcntl.h>

int isatty(fd_t fd);

DESCRIPTION

Returns 1 if fd is an open descriptor connected to a terminal and 0 if it is not.

SEE ALSO

Chapter on the file system.

lseek

NAME

lseek - reposition read/write file offset

SYNOPSIS

#include <fcntl.h>

off_t lseek(fd_t fd, off_t offset, int whence);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

open

NAME

open - open and possibly create a file or device

SYNOPSIS

#include <fcntl.h>

fd_t open(const char *path, int oflag, int mode);

DESCRIPTION

xxx

Values for oflag:

 #define O_RDONLY 1 // Same value as O_READ in zserver.h

 #define O_WRONLY 2 // Same value as O_WRITE in zserver.h

 #define O_RDWR 2 // Alias for O_WRITE, (O_WRITE implies O_READ)
 #define O_CREAT 0x0004 // open with file create (uses third arg)

 #define O_TRUNC 0x0008 // open with truncation

 #define O_APPEND 0x0010 // append (writes guaranteed at the end)

 #define O_NONBLOCK 0x0020 // non-blocking I/O (POSIX)

 #define O_NDELAY 0x0020 // non-blocking I/O
xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

pipe

NAME

pipe - create a pipe

SYNOPSIS

#include <unistd.h>

int pipe(int fd[2]);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

poll

NAME

poll - wait for some event on a file descriptor
SYNOPSIS

#include <sys/poll.h>

int poll(struct pollfd *fds, unsigned int nfds, int timeout);
DESCRIPTION

The poll() function provides applications with a mechanism for multiplexing input/output over a set of file descriptors. For each member of the array pointed to by fds, poll() examines the given file descriptor for the event(s) specified in events. The number of pollfd structures in the fds array is specified by nfds. The poll() function identifies those file descriptors on which an application can read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each file descriptor. It is a pointer to an array with one member for each open file descriptor of interest. The array's members are pollfd structures, which contain the following members:

 int fd; /* file descriptor */

 short events; /* requested events */

 short revents; /* returned events */

The fd member specifies an open file descriptor and the events and revents members are bitmasks constructed by a logical OR operation of any combination of the following event flags:

POLLIN
Data may be read without blocking.

POLLOUT
Data may be written without blocking.

POLLERR
An error has occurred on the device or stream. This flag is only valid in the revents bitmask; it is not used in the events member.

POLLNVAL
The specified fd value does not belong to an open file. This flag is only valid in the revents member; it is not used in the events member.

If the value fd is less than 0, events is ignored and revents is set to 0 in that entry on return from poll().

The results of the poll() query are stored in the revents member in the pollfd structure. Bits are set in the revents bitmask to indicate which of the requested events are true. If none are true, none of the specified bits are set in revents when the poll() call returns. The event flags POLLERR and POLLNVAL are always set in revents if the conditions they indicate are true; this occurs even though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll() waits at least timeout milliseconds for an event to occur on any of the selected file descriptors. On a computer where millisecond timing accuracy is not available, timeout is rounded up to the nearest legal value available on that system. If the value timeout is 0, poll() returns immediately. If the value of timeout is -1, poll() blocks until a requested event occurs or until the call is interrupted. The poll() function is not affected by the O_NDELAY and O_NONBLOCK flags.

RETURN VALUE

Upon successful completion, a non-negative value is returned. A positive value indicates the total number of file descriptors that has been selected (that is, file descriptors for which the revents member is non-zero). A value of 0 indicates that the call timed out and no file descriptors have been selected. Upon failure, -1 is returned and errno is set to indicate the error.
ERRORS

EBADF
An invalid file descriptor was given in one of the sets.

EFAULT
The array given as argument was not contained in the calling program's address space.

EINTR
A signal occurred before any requested event.

EINVAL
The nfds value exceeds the RLIMIT_NOFILE value.

ENOMEM
Some memory related resource was not available.
NOTES

POLLIN and POLLOUT events indicate that SOME data can be read or written. To avoid blocking, a task must still set the fd to a non-blocking mode or check to see how MANY bytes can be read or written before calling read() or write().
Not all device drivers can or do provide the necessary information for poll() to work. At the time of this writing poll() should work for sockets, flash files, serial ports.
SEE ALSO

close, fcntl, fstat, ioctl, lseek, open, read, stat, write
read

NAME

read - read from a file descriptor

SYNOPSIS

#include <fcntl.h>

int read(fd_t fd, void *buf, int nbyte);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

stat

NAME

stat - get file status

SYNOPSIS

#include <sys/stat.h>

int stat(const char *file_name, struct stat *buf);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

unlink

NAME

unlink - delete a name and possibly the file it refers to

SYNOPSIS

#include <fcntl.h>

int unlink(const char *pathname);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

utime

NAME

utime, utimes - change access and/or modification times of an inode

SYNOPSIS

#include <utime.h>

int utime(const char *filename, const struct utimbuf *buf);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

waitpid

NAME

waitpid - wait for process termination

SYNOPSIS

#include <unistd.h>

PID waitpid(PID pid, int *status, int options);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

write

NAME

write - write to a file descriptor

SYNOPSIS

#include <fcntl.h>

int write(fd_t fd, void *buf, int nbyte);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

9.2
stdio functions

fflush

NAME

fflush - flush a stream

SYNOPSIS

#include <fcntl.h>

int fflush(FILE *stream);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

perror

NAME

perror - print a system error message

SYNOPSIS

#include <errno.h>

void perror(const unsigned far char *s);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

rename

NAME

rename - change the name or location of a file

SYNOPSIS

#include <fcntl.h>

int rename(char const *oldpath, const char *newpath);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

9.3
socket library functions

The following man-page style entries describe the functionality currently implemented for each of the listed socket driver functions. These functions are designed to be compatible with and reproduce a useful subset of the functionality these functions normally provide on a Linux or Unix system. They provide a conventional interface to the non-standard functions in the Softools STCPIP library, which is itself a licensed/ported version of code provided by Rabbit Inc ®. The functionality is currently limited to TCP and UDP connections.

While there is nothing to stop you from using the STCPIP functions directly, doing so means you are giving up portability, one of the prime motivations for using DEBROS in the first place. Also, use of both the DEBROS functions and the STCPIP functions in your own code (i.e. outside the DEBROS socket driver) is VERY likely to result in an unstable system.

For anyone not familiar with the TCP or UDP protocols, or the standard (BSD style) functions for using them on Linux and Unix systems, I highly recommend the “TCP/IP Illustrated” series of books by W. Richard Stevens and Gary R. Wright, published by Addison-Wesley. (NOTE: My copy is an older version, but I am assuming the newer versions are at least as good).

accept

NAME

accept - accept a connection on a socket

SYNOPSIS

#include <sys/socket.h>

fd_t accept(fd_t s, struct sockaddr *addr, int *addrLen);

DESCRIPTION

The accept function is used with connection-based sockets of type SOCK_STREAM. It extracts the first connection request on the queue of pending connections, creates a new connected socket with mostly the same properties as s, and allocates a new file descriptor for the socket, which is returned. The newly created socket is no longer in the listening state. The original socket s is unaffected by this call. Note that any per file descriptor flags (everything that can be set with the F_SETFL fcntl, like non-blocking) are not inherited across an accept.

The argument s is a socket that has been created with socket, bound to a local address with bind, and is listening for connections after a listen.

The argument addr is a pointer to a sockaddr structure. This structure is filled in with the address of the connecting entity, as known to the communications layer. The exact format of the address passed in the addr parameter is determined by the socket's family (see socket). The addrlen argument is a value-result parameter: it should initially contain the size of the structure pointed to by addr; on return it will contain the actual length (in bytes) of the address returned. When addr is NULL nothing is filled in.

If no pending connections are present on the queue, and the socket is not marked as non-blocking, accept blocks the caller until a connection is present. If the socket is marked non-blocking and no pending connections are present on the queue, accept returns EAGAIN.

DEBROS does not currently support the use of methods like select or poll to notify a task of incoming connections.

RETURN VALUE

The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the accepted socket.

ERRORS

accept shall fail if:

EAGAIN
The socket is marked non-blocking and no connections are present to be accepted.

EBADF
The descriptor is invalid.

ECONNRESET

A connection has been aborted.

EINTR
The system call was interrupted by a signal that was caught before a valid connection arrived.

EINVAL
Socket is not listening for connections.

EMFILE
The per-process limit of open file descriptors has been reached.

ENETDOWN

The network is going down or is not yet back up

ENFILE
The system limit on the total number of open files has been reached.

ENOTSOCK

The descriptor references a file, not a socket.

EOPNOTSUPP

The referenced socket is not of type SOCK_STREAM.

 accept may fail if:

ENOBUFS, ENOMEM

Not enough free memory. This often means that the memory allocation is limited by the socket buffer limits, not by the system memory.

EPROTO
Protocol error.

SEE ALSO

bind, connect, listen, socket

bind

NAME

bind - bind a name to a socket

SYNOPSIS

#include <sys/socket.h>

int bind(fd_t sockfd, const struct sockaddr *my_addr, int addrlen);

DESCRIPTION

bind gives the socket sockfd the local address my_addr. my_addr is addrlen bytes long. Traditionally, this is called "assigning a name to a socket." When a socket is created with socket, it exists in a name space (address family) but has no name assigned.

It is normally necessary to assign a local address using bind before a SOCK_STREAM socket may receive connections (see accept).

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.
ERRORS

EBADF
sockfd is not a valid descriptor.

EINVAL
The socket is already bound to an address. This may change in the future: see linux/unix/sock.c for details.

ENETDOWN

The network is going down or is not yet back up

ENOTSOCK

Argument is a descriptor for a file, not a socket.

ESOCKTNOSUPORT

Unsupported socket type (DEBROS supports only SOCK_STREAM and SOCK_DGRAM)

SEE ALSO

accept, connect, getsockname, listen, socket

connect

NAME

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/socket.h>

int connect(fd_t sockfd, const struct sockaddr *serv_addr, int addrlen);

DESCRIPTION

The file descriptor sockfd must refer to a socket of type SOCK_STREAM. This call attempts to make a connection to another socket. The other socket is specified by serv_addr, which is an address (of length addrlen) in the communications space of the socket.

connect can be called only once for a socket.

RETURN VALUE

If the connection or binding succeeds, zero is returned. On error, -1 is returned, and errno is set appropriately.
ERRORS

The following are general socket errors only. There may be other domain-specific error codes.

EALREADY

The socket is non-blocking and a previous connection attempt has not yet been completed.

EBADF
The file descriptor is not a valid index in the descriptor table.

ECONNREFUSED

No one listening on the remote address.

EISCONN
The socket is already connected.

ENETDOWN

The network is going down or is not yet back up

ENETUNREACH

Network is unreachable.

ENOTSOCK

The argument s is not a socket.

ESOCKTNOSUPPORT

Socket type is not SOCK_STREAM

ETIMEDOUT

Timeout while attempting connection. The server may be too busy to accept new connections. Note that for IP sockets the timeout may be very long when syncookies are enabled on the server.

NOTES

Connect does not currently support non-blocking mode.

SEE ALSO

accept, bind, getsockname, listen, socket

getsockopt, setsockopt

NAME

getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

#include <sys/socket.h>

int getsockopt(int s, int level, int optname,

 void *optval, socklen_t *optlen);

int setsockopt(int s, int level, int optname,

 const void *optval, socklen_t optlen);

DESCRIPTION

Getsockopt and setsockopt manipulate the options associated with a socket. Options may exist at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options the level at which the option resides and the name of the option must be specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To manipulate options at any other level the protocol number of the appropriate protocol controlling the option is supplied. (At this time, DEBROS supports only socket level, SOL_SOCKET).

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt they identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on return to indicate the actual size of the value returned. If no option value is to be supplied or returned, optval may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for interpretation. The include file <sys/socket.h> contains definitions for socket level options, described below.

Most socket-level options utilize an int parameter for optval. For setsockopt, the parameter should be non-zero to enable a boolean option, or zero if the option is to be disabled.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
The argument s is not a valid descriptor.

EINVAL
optlen invalid in setsockopt

ENETDOWN

The network is going down or is not yet back up

ENOPROTOOPT

The option is unknown at the level indicated.

ENOTSOCK

The argument s is not a socket.

SEE ALSO

 ioctl, socket, socket

inet_ntop

NAME

inet_ntop - Parse network address structures

SYNOPSIS

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src, char *dst, socklen_t cnt);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

inet_pton

NAME

xxx - abcd

SYNOPSIS

#include <arpa/inet.h>

int inet_pton(int af, const char *src, void *dst);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

listen

NAME

listen - listen for connections on a socket

SYNOPSIS

#include <sys/socket.h>

int listen(fd_t s, int backlog);

DESCRIPTION

To accept connections, a socket is first created with socket, a willingness to accept incoming connections and a queue limit for incoming connections are specified with listen, and then the connections are accepted with accept. The listen call applies only to sockets of type SOCK_STREAM.

A backlog value > 0 allows a connection to be established even if there is not yet a socket available. This is done by setting a parameter in the TCP header during the connection setup phase that indicates 0 bytes of data can be received at the present time. The requesting end of the connection will wait until the TCP header parameter indicates that data will be accepted.

The 2MSL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on a controller that is processing a large number of connections is offset by allowing the program to have less sockets and consequently less RAM usage.
RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

EADDRINUSE
Another socket is already listening on the same port.

EBADF
The argument s is not a valid descriptor.

ENOTSOCK
The argument s is not a socket.

EOPNOTSUPP
 The socket is not of a type that supports the listen operation.

SEE ALSO

accept, connect, socket

recv, recvfrom

NAME

recv, recvfrom - receive a message from a socket

SYNOPSIS

#include <sys/socket.h>

int recv(fd_t s, void *buff, int len, int flags);

int recvfrom(fd_t s, void *buff, int len, int flags,

 struct sockaddr *from, int *fromlen);

DESCRIPTION

The recvfrom call is used to receive messages from a socket, and may be used to receive data on a socket whether or not it is connection-oriented.

If from is not NULL, and the underlying protocol provides the source address, this source address is filled in. The argument fromlen is a value-result parameter, initialized to the size of the buffer associated with from, and modified on return to indicate the actual size of the address stored there.

The recv call is normally used only on a connected socket (see connect) and is identical to recvfrom with a NULL from parameter.

Both routines return the length of the message on successful completion. If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket the message is received from (see socket).

Neither routine currently supports blocking, so if no messages are available at the socket, the value -1 is returned and the external variable errno set to EAGAIN. If a blocking read is needed, use read rather one of the recv functions.

The receive calls normally return any data available, up to the requested amount, rather than waiting for receipt of the full amount requested.

The select and poll calls are not yet implemented so there is not yet a way to block waiting for data on any one of a group of sockets.

The flags argument is currently ignored. For portability, specify MSG_DONTWAIT.

RETURN VALUE

These calls return the number of bytes received, or -1 if an error occurred.

ERRORS

EAGAIN
The socket is marked non-blocking and the receive operation would block, or a receive timeout had been set and the timeout expired before data was received.

EBADF
The argument s is an invalid descriptor.

ECONNREFUSED

A remote host refused to allow the network connection (typically because it is not running the requested service).

EINTR
The receive was interrupted by delivery of a signal before any data were available.

EINVAL
Invalid argument passed.

ENOTSOCK

 The argument s does not refer to a socket.

ESOCKTNOTSUPPORT

Argument s refers to an unsupported socket type for this operation.

SEE ALSO

fcntl, getsockopt, read, socket

send, sendto

NAME

send, sendto - send a message from a socket

SYNOPSIS

#include <sys/socket.h>

int send(fd_t s, const void *buff, int len, int flags);

int sendto(fd_t s, const void *buff, int len, int flags,

 const struct sockaddr *to, int tolen);

DESCRIPTION

The system calls send and sendto are used to transmit a message to another socket.

The send call may be used only when the socket is in a connected state (so that the intended recipient is known). The only difference between send and write is the presence of flags. With zero flags parameter, send is equivalent to write. Also, send(s,buf,len) is equivalent to sendto(s,buf,len,NULL,0).

The parameter s is the file descriptor of the sending socket.

If sendto is used on a connection-mode (SOCK_STREAM) socket, the parameters to and tolen are ignored (and the error EISCONN may be returned when they are not NULL and 0), and the error ENOTCONN is returned when the socket was not actually connected. Otherwise, the address of the target is given by to with tolen specifying its size.

The message to be sent is found in buf and has length len.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a return value of -1.

Neither function currently supports blocking mode. If the message does not fit into the send buffer of the socket, they will return the number of bytes written and set errno to EAGAIN.

The flags argument is currently ignored. For portability, specify MSG_DONTWAIT.

RETURN VALUE

The calls return the number of characters sent, or -1 if an error occurred.

ERRORS

These are some standard errors generated by the socket layer. Additional errors may be generated and returned from the underlying protocol modules.

EAGAIN or EWOULDBLOCK

The socket is marked non-blocking and the requested operation would block.

EBADF
An invalid descriptor was specified.

ECONNRESET

Connection reset by peer.

EDESTADDRREQ

The socket is not connection-mode, and no peer address is set.

EINTR
A signal occurred before any data was transmitted.

EINVAL
Invalid argument passed.

EISCONN
The connection-mode socket was connected already but a recipient was specified. (Now either this error is returned, or the recipient specification is ignored.)

ENOTCONN

The socket is not connected, and no target has been given.

ENOTSOCK

The argument s is not a socket.

EOPNOTSUPP

Some bit in the flags argument is inappropriate for the socket type.

EPIPE
The local end has been shut down on a connection oriented socket. In this case the process will also receive a SIGPIPE unless MSG_NOSIGNAL is set.

SEE ALSO

fcntl, getsockopt, recv, socket, write

socket

NAME

socket - create an endpoint for communication

SYNOPSIS

#include <sys/socket.h>

fd_t socket(int domain, int type, int protocol);

DESCRIPTION

Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communication domain; this selects the protocol family which will be used for communication. These families are defined in <sys/socket.h>. The only family currently supported by DEBROS is PF_INET, for IPv4 internet protocols.

The socket has the indicated type, which specifies the communication semantics. The types currently supported by DEBROS are:

SOCK_STREAM

 Provides sequenced, reliable, two-way, connection-based byte

 streams. An out-of-band data transmission mechanism may be sup-

 ported.

SOCK_DGRAM

 Supports datagrams (connectionless, unreliable messages of a

 fixed maximum length).

The protocol parameter is currently ignored by DEBROS. However, for the sack of portability, either IPPROTO_TCP (for type SOCK_STREAM) or IPPROTO_UDP (for type SOCK_DGRAM) should be used.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. They do not preserve record boundaries. A stream socket must be in a connected state before any data may be sent or received on it. A connection to another socket is created with a connect call. Once connected, data may be transferred using read and write calls or some variant of the send and recv calls. When a session has been completed a close may be performed.

The communications protocols which implement a SOCK_STREAM ensure that data is not lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time, then the connection is considered to be dead.

SOCK_DGRAM sockets allow sending of datagrams to correspondents named in send calls. Datagrams are generally received with recvfrom, which returns the next datagram with its return address.

The operation of sockets is controlled by socket level options. These options are defined in <sys/socket.h>. The functions setsockopt and getsockopt are used to set and get options, respectively.

RETURN VALUE

-1 is returned if an error occurs; otherwise the return value is a descriptor referencing the socket.

ERRORS

EAFNOSUPPORT

The implementation does not support the specified address family.

EINVAL
Unknown protocol, or protocol family not available.

EMFILE
Process file table overflow.

ENFILE
The system limit on the total number of open files has been reached.

ENOBUFS or ENOMEM

Insufficient memory is available. The socket cannot be created until sufficient resources are freed.

EPROTONOSUPPORT or ESOCKTNOSUPPORT

The protocol type or the specified protocol is not supported within this domain.

Other errors may be generated by the underlying protocol modules.

SEE ALSO

accept, bind, connect, fcntl, getsockopt, ioctl, listen, read, recv, send, write

"An Introductory 4.3 BSD Interprocess Communication Tutorial" is reprinted in UNIX Programmer's Supplementary Documents Volume 1.

"BSD Interprocess Communication Tutorial" is reprinted in UNIX Programmer's Supplementary Documents Volume 1.

“TCP/IP Illustrated” series of books by W. Richard Stevens and Gary R. Wright, published by Addison-Wesley.
9.4
time functions

asctime, asctime_r, ctime, ctime_r, gmtime, gmtime_r, localtime, localtime_r, mktime

NAME

asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gmtime_r, localtime_r

 - transform date and time to broken-down time or ASCII

SYNOPSIS

#include <common.h>

char *asctime(const struct tm *tm); (non-reentrant, in Softools lib)
char *asctime_r(const struct tm *tm, char *buf);

char *ctime(const time_t *timep); (non-reentrant, in Softools lib)
char *ctime_r(const time_t *timep, char *buf);

struct tm *gmtime(const time_t *timep); (non-reentrant, in Softools lib)
struct tm *gmtime_r(const time_t *timep, struct tm *result);

struct tm *localtime(const time_t *timep); (non-reentrant, in Softools lib)
struct tm *localtime_r(const time_t *timep, struct tm *result);

time_t mktime(struct tm *tm);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

difftime

NAME

xxx - abcd

SYNOPSIS

#include <time.h>

double difftime(time_t time1, time_t time0); (in Softools lib)
DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

gettimeofday, settimeofday

NAME

xxx - abcd

SYNOPSIS

#include <unistd.h>

int gettimeofday(struct timeval *tv, void *nullPtr);

int settimeofday(const struct timeval *tv , const void *nullPtr);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

stime

NAME

stime - set time

SYNOPSIS

#include <unistd.h>

int stime(time_t *t);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

time

NAME

time - get time in seconds

SYNOPSIS

#include <time.h>

time_t time(time_t *t); (in Softools lib)
DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

9.5
resource functions

getpriority, setpriority

NAME

getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

#include <unistd.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int priority);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

9.6
signal functions

kill

NAME

kill - send signal to a process

SYNOPSIS

#include <unistd.h>

int kill(PID pid, int sig);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sigaction

NAME

sigaction, sigprocmask, sigpending, sigsuspend - POSIX signal handling functions

SYNOPSIS

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,

 struct sigaction *oldact);

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int sigpending(sigset_t *set);

int sigsuspend(const sigset_t *mask);

DESCRIPTION

sigaction and sigsuspend are not implemented yet: They currently just return -1.

The sigprocmask call is used to change the list of currently blocked signals. The behavior of the call is dependent on the value of how, as follows.

SIG_BLOCK

The set of blocked signals is the union of the current set and the set argument.

SIG_UNBLOCK

The signals in set are removed from the current set of blocked signals. It is legal to attempt to unblock a signal which is not blocked.

SIG_SETMASK

The set of blocked signals is set to the argument set.

If oldset is non-null, the previous value of the signal mask is stored in oldset.

The sigpending call allows the examination of pending signals (ones which have been raised while blocked). The signal mask of pending signals is stored in set.

RETURN VALUE

Until implemented, sigaction will always return -1. The functions sigprocmask and sigpending return 0 on success and -1 on error. The function sigsuspend always returns -1. Until it is properly implemented, it will simply return right away and will NOT set error to EINTR.

ERRORS

EINTR
System call was interrupted.

EINVAL
An invalid signal was specified. This will also be generated if an attempt is made to change the action for SIGKILL or SIGSTOP, which cannot be caught (remember that changing an action and blocking a signal are different operations).

NOTES

It is not possible to block SIGKILL or SIGSTOP with the sigprocmask call. Attempts to do so will be silently ignored.

Signal handling in DEBROS is currently limited to changing which signals are blocked. Setting a signal handler is not yet implemented, so the only real use for signals at this time is to allow a process to block a signal giving it the chance to periodically check for pending signals and then deal with them within the normal program flow.

 For example, simply killing all processes to do a shutdown doesn't give processes a chance to clean up after themselves in an orderly manner.

To this end, each process will receive a terminate signal (SIGTERM) several seconds before actually being killed. This will cause all blocked processes to be resumed with errno set to EINTR (interrupted system call).

To exit cleanly, processes must check for errors and call sigpending() to see if they have received a SIGTERM signal and then do what is needed to exit cleanly on their own. If they fail to do so within a few seconds after receiving the SIGTERM signal, they will be killed and any files they had opened will be closed.

Example:

 sigset_t sigSet;

 // block Terminate signal so we can shut down cleanly if needed

 sigSet = sigmask(SIGTERM); sigprocmask(SIG_BLOCK, &sigSet, NULL);

 for (;;) {

 ...

 // check for pending Terminate signal

 if (sigpending(&sigSet) == 0) if (sigismember(&sigSet, SIGTERM)) {

 ...;

 Exit(0);

 }

 }

SEE ALSO

kill, signal, sigsetops

signal

NAME

signal - ANSI C signal handling

SYNOPSIS

#include <signal.h>

sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

Not implemented yet. Currently just returns 0.

RETURN VALUE

0
ERRORS

NOTES

SEE ALSO

sigaction, sigprocmask, sigpending, sigsuspend, sigsetops

sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

NAME

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - POSIX signal set operations.

SYNOPSIS

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

DESCRIPTION

The sigsetops functions allow the manipulation of POSIX signal sets.

sigemptyset initializes the signal set given by set to empty, with all signals excluded from the set.

sigfillset initializes set to full, including all signals.

sigaddset and sigdelset add and delete respectively signal signum from set.

sigismember tests whether signum is a member of set.

RETURN VALUE

sigemptyset, sigfillset, sigaddset and sigdelset return 0 on success and -1 on error.

sigismember returns 1 if signum is a member of set, 0 if signum is not a member, and -1 on error.

ERRORS

EINVAL
sig is not a valid signal.
SEE ALSO

sigaction, signal, sigpending, sigprocmask, sigsuspend

9.7
semaphore functions

sem_close
NAME

sem_close - close a named semaphore
SYNOPSIS

#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_destroy

NAME

sem_destroy - destroy an unnamed semaphore
SYNOPSIS

#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_getvalue
NAME

sem_getvalue - get the value of a semaphore
SYNOPSIS

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_init
NAME

sem_init - initialize an unnamed semaphore
SYNOPSIS

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, uint value);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_open
NAME

sem_open - initialize/open a named semaphore
SYNOPSIS

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, mode_t mode, uint value);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_post
NAME

sem_post - increment the count of a semaphore
SYNOPSIS

#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_unlink
NAME

sem_unlink - remove a named semaphore
SYNOPSIS

#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

sem_wait
sem_trywait

sem_timedwait

NAME

sem_wait, sem_trywait, sem_timedwait - acquire or wait for a semaphore
SYNOPSIS

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

DESCRIPTION

xxx

xxx

RETURN VALUE

xxx.
ERRORS

XXX abcd

NOTES

Xxxx

SEE ALSO

xxx, abcd

Appendix A: Diagnostic/Programming cable/box

Downloading code to a brand new Rabbit Core Module is done using a serial connection the appropriate software (I use an older copy of the Rabbit Field Utility from Rabbit Inc).

The serial programming cable available from Rabbit Inc for use with their Rabbit Core Modules (RCMs) contains two 10-pin connectors, one labeled PROG and the other DIAG. To download code to a module you must connect the PROG connector to the core module. But to run code and communicate with it via this cable you must switch to the DIAG connector instead.

These connectors are not particularly durable. This is especially true of the smaller connector used for newer core modules. It doesn’t take long before switching back and forth results in an useable cable, either because it simply came apart, or the constant connecting/disconnecting results in less than reliable connections between the cable and the header on the Rabbit module.

In addition, one of the connections is to the reset line on the module, but there is no button or switch provided to manually trigger a reset.

Use of the SHDesign’s Resident Download Manager (RDLM) (or its equivalent) can eliminate the need to constantly switch back and forth between these connectors, which can eliminate a lot of wear and tear. But that still doesn’t address the lack of a handy manual reset.

I strongly recommend that you either make or buy a cable that provides a reset button and a switch to change between the programming and diagnostic modes. This allows you to connect the cable and leave it alone while working with given board. If you already have a cable from Rabbit Inc, or can’t find a source for a premade cable with the features you want, you can use the diagrams and pictures below as a guide to modify the Rabbit cable to eliminate the problems I outlined above. I also recommend adding something to the connectors themselves to relieve the physical strain on them when connecting them and disconnecting them (see photos of my modified cable below).

[image: image1.jpg]

[image: image2.png]— Norma ({\/ Closed

<‘—‘Norm<;((y Ope;; (/pushbaﬂ’on/
To

e pe

| DIAG
(On-0ff-On) |
PrROG

SMODE1
SMODEO -
Status from Rabbitt
N/C
Data from Rabbitt
RESET =
+5V from ZWorld -
Clock ———
Ground
Data to Rabbit

PC Serial Port Signal Rabbit Signal

DTR {output) /RESET (input, reset system)

i [k oo PROG/DIAG switchbox addition
to ZWorld Programming cable

RX (serial input)

[image: image3.jpg]@ PROG

Wy \ T4
RESET DIAG

ZWorld PROG/DIAG Adapter
Return to Mark Davis, EE Dept.

e S ———————

 [image: image4.jpg]

[image: image5.jpg]

 [image: image6.jpg]

Appendix B: Automatic Configuration, Backups, and Restores

One of the goals of any large, complex control system is to keep maintenance as simple as possible. As the popularity of devices using embedded controllers continues to rise, their use results in a corresponding rise in the complexity and number of separate devices to be maintained. Without an effective methodology in place to deal with them, maintenance overhead and reliability will suffer.

At the NSCL, as with most control systems, one of our primary concerns is keeping down-time to a minimum. When a controller fails, the process of replacing it with a spare must be as simple as possible. That meant that doing whatever we could to avoid the need for specialized knowledge of the device or use of special configuration software.

As our use of custom (in-house designs) ethernet-based embedded controllers continued to rise, we realized there were 2 main issues that had to be addressed when replacing a controller: The network configuration had to be set, and any device-specific calibration information had to be loaded. What we needed was a way to make these happen with as little human interaction as possible.

After debating various approaches, we decided on a simple method that could be applied to all our in-house designs: The control system database would include a unique id for each active controller, and the id for any given controller could be set to match via switches on the controller. With this in place, swapping a controller requires only the correct switch settings, and the problem became one of designing software that could automatically locate, monitor, and configure controllers based on these unique ids.

Knowing that humans make mistakes (such as forgetting to set the device ID switches), and that hardware can malfunction (e.g. a failure in the ports connected to the ID switches), it is not enough to simply deal with properly working controllers with the correct switch settings. The process must also quickly and reliably detect problems, deal with them in a sensible fashion, and alert operators.

The 1st generation of a software design to address these issues fell short of our goals, particularly in terms of being quick to respond to changes and dealing with problems in an appropriate fashion.

This appendix describes a 2nd generation design to manage this process. It is our belief that this newer design will respond much more quickly to changes, as well as providing a much more robust mechanism for detecting and dealing with problems.

Overview of components

The control system consists of 3 main classes of computing devices:

IOC’s (Input/Output Controllers):

IOC’s are server computers that communicate directly with controllers and/or devices via I/O connections. Their primary functions are as follows:

· Monitor the state of controllers and send them commands

· Aggregate connections from clients (usually workstations) that need to monitor /alter the state of the control system. This minimizes the # of connections an embedded controller needs to service directly.

· Implement higher-level control system logic. This usually involves logic that requires knowing the state of multiple devices, but also often provides extensions to or interpretation of what the controller provides (particularly useful if the controller is from a 3rd party, making changes it to impossible or impractical).

Each IOC also provides the following functionality for the newer automatic configuration process:

· Maintain a list of controllers it is responsible for and the last known state of each.

· Send configuration commands via UDP broadcast packets to controllers that are not responding or have incorrect configurations.

· Monitor all UDP broadcast packets going to or coming from controllers. Checking ALL the packets allows an IOC to keep an up-to-date picture of the state of all the controllers it is responsible for, as well as detect and respond to situations that might affect the ones it is responsible for (such as a controller using the wrong address, or another IOC sending conflicting configuration commands).

· Remote access to files in a specific directory via a simple TCP protocol. Used by controllers to archive (and occasionally retrieve) files containing configuration data. (NOTE: This service may be provided by one or more servers other than the IOC responsible for a particular controller).

Embedded Controllers:

Embedded controllers generally consist of a small, Single Board Computer (SBC) with a CPU, some memory, and various input/output connections. The SBC is usually mounted in a larger container and connected directly to supporting circuitry that interfaces with one or more devices to be monitored and controlled. The following describes the functionality of the newer controllers being designed and built at the NSCL with respect to the automatic configuration process.

· Each controller has a Device Type and a Device ID. The combination of the Device Type (hard-coded in the firmware) and the Device ID (read from switches mounted in the controller or on the SBC within the controller) must be unique.

· Each controller periodically sends out a broadcast packet announcing its presence and its configuration. These packets contain the following:

· The Device Type (hard-coded in firmware)

· The Device ID (read from switches)

· The MAC address (static value stored in flash, assigned by the manufacturer)

· The IP address (configurable via software)

· The Network mask (configurable via software)

· The Gateway (configurable via software)

· The controller name (configurable via software)

· UpTime (# of seconds since last rebooted)

· Conflict timestamps (time of various conflicts, if any, the controller detected)

· Configuration data is organized as groups of “persistent” values, and each group has an associated file name. Any changes to values in a group are periodically saved to the file. Each group also has an associated category, where the category specifies what the data pertains to. The 3 possible categories are:

· SBC-specific. The most common example is calibration data for the A/D and D/A circuits on a specific SBC (Single Board Computer).

· Controller-specific. The most common example is calibration data for analog circuits inside the controller (like the “front end” boards in our BCMs).

· Device-specific. The most common example is gain and offsets used to convert analog readings from the device to engineering units (such as converting a voltage read from a potentiometer into a position value in inches or millimeters, or the voltage across a power supply shunt in to amps). Another example might be names or descriptions of the input/output signals.

Two copies are kept of the current state of each group of configuration values: One in a local file (stored in flash), and one in a remote file (accessed via a TCP-based simple remote file system protocol). A limited # of older copies of the files are also kept on the remote file system.

Storing a copy of each configuration data file on a remote server, and associating a category with each one, allows a swapped-in controller to quickly reconfigure itself for a specific device by using the remote copy of the Device-specific data saved by the controller it replaced.

Keeping older copies of the files allows an older configuration to be manually restored if needed.

Workstations:

Workstations provide the human-level interface to the control system. GUI-based applications running on the workstations communicate primarily with the IOC’s to provide information about the state of the system and allow a person to send commands to the control system.

While communication with individual controllers is often possible, such direct communication is generally limited to diagnostic and testing functions, as doing so often bypasses the higher-level logic in the IOC’s and can overburden the controllers.

Of particular interest to the context of this paper is an application called the Device Manager. This application allows a person to easily monitor and manage an individual controller or a group of controllers manually. It is an important diagnostic and testing tool for embedded controllers.

The Process

Both the control system servers and the controllers maintain a table of timestamps that keep track of when various events last occurred. These timestamps are regularly updated by monitoring the packets sent to and from controllers. In addition to keeping track of configuration conflicts, the servers keep track of when a controller was registered with the service, and when the controller was last active.

Each entry includes a timestamp, an IP address, and a MAC address. Each time a packet is received that indicates a conflict exists, the time the packet was received, the IP address and the MAC address it came from are saved in the appropriate entry in the table.

The possible conflicts are: Device Type + Device ID, IP Address, and Name. The table contains two entries for each type, one indicating a conflict between controllers, the other indicating a conflict in the control system configuration.

IOC’s (Input/Output Controllers):

· A configuration process server runs continuously on each IOC that communicates with the controllers over ethernet. It provides the following functionality:

1. Keep a list of all the controllers the IOC is responsible for. Each entry includes the configuration the controller should have and the last known state of each one (including the event data described above).

2. Periodically send out broadcast configuration packets for controllers that are not responding, are incorrectly configured, or are part of a conflict.

3. Listen for and process all broadcast packets to or from the controllers. Each packet will fall in to one of the following categories:

Announcement Packets (sent by a controller):

· The MAC matches the MAC in one or more conflict events:

· If the conflict no longer applies, then clear the event data

· If the controller (Device Type + Device ID) is NOT in our list:

· The IP Address or Name matches one of the devices in our list:

· Update the event data for the conflicting value

· Send a configuration packet to change the conflicting value to a default, non-conflicting value

· The (Device Type + Device ID) IS in our list:

· If the Name or IP address is incorrect:

· If the last-active event timestamp is not set or the MAC address for the last-active event matches:

· Send a the correct configuration to the controller

· Update the last-active event data

· Else

· Update the data for the controller ID conflict event

· If the IP address or Name match, update the data for those conflict events as well

· Else

· If the last-active event timestamp is not set or the MAC addresses for the last-active event matches:

· Update the last-active event data

· Else

· Update the data for the controller ID, IP Address, and Name conflict events

Command Packets (sent to controllers):

· The command is for a controller that is not in our list. No action needs to be taken.

· The command is for a controller in our list and the configuration matches the one in our list. No action needs to be taken (although the time such a packet was last detected should be recorded for use in diagnostic commands).

· The command is for a controller in our list and the configuration does NOT match the one in our list: Set a status bit indicating a conflict exists in the configuration of the control system (i.e. another IOC is trying to reconfigure one of our controllers using a configuration that does not match the one we have).

4. Periodically check the age of each event. For each one whose age has exceeded some set interval, clear the timestamp and any related data (e.g. if the last active timestamp is being cleared, then clear the MAC address as well).

· Food for thought: Periodically send command packets to all devices that the servers found are part of a conflict. The packets would simply instruct the controller to reduce its interval for announcing its configuration so the status of the conflict problem would be updated more quickly.

Embedded Controllers:
· Periodically read the Device ID from the ID switches.

· Start Controller Configuration daemon (configd). This process does the following:

1. Periodically send out a broadcast packet announcing the controller’s configuration and status. The packet includes: Device Type, Device ID, IP address, MAC address, Name, seconds since startup, and the conflict-timestamps.

2. Listen for and process all broadcast packets to or from other controllers. Each packet will fall in to one of the following categories:

Announcement Packets (sent by another controller):

· No conflict (the Device Type + Device ID, the IP address, and the Name are all different). No action is taken.

· A conflict exists (the Device Type + Device ID, the IP address, or the Name match). Update the corresponding conflict-timestamp(s) and reduce the time interval between announcement packets to the minimum.

Command Packets (sent to controllers):

· The packet is for us (the Device Type + Device ID match). If the IP Address or the Name is different, update the configuration and reset any timestamp for the conflict type corresponding to the new value(s) (e.g. if the IP Address is different, reset the timestamp for the IP Address conflict). In any case, reduce the time interval between announcement packets to the minimum (so the sender will be able to quickly determine that the command was received, and any conflicts will show up quickly).

· The packet is not for us (the Device Type or Device ID is different), but the IP Address or the Name matches ours. Update the corresponding conflict-timestamp(s) and reduce the time interval between announcement packets to the minimum.

3. When first started, whenever a conflict is seen, or the controller’s configuration is changed, the interval between sending the announcement packets is small (around 5 seconds?). For each interval in which no conflict was seen, the interval is increased (up to some maximum). To help spread out the timing of packets from the controllers (thereby reducing the risk of broadcast storms and lost packets), the interval will be offset from the standard values used for all controllers by an amount based on its MAC address.

The date/time of each of the configuration files in flash is periodically compared to the copy kept on the remote server. If the local copy is newer (or no copy exists on the remote server), then the remote copy is renamed (to archive it) and a new copy is written.

Appendix C: Device Manager

Xxxx

[image: image7.png]Device Man:

=1olx]

DevType- [eviD [——Neme— | —PAddr— | MACAdr | —Appllers— | —RTOSVers— | seesAddr [12| —UpFor— [age|
% [ow 0x0006 [KEDVR_ 192,160,176 | 009020298173 | 2010-01-01 1425:15 | 20100101 191112 | 192.168.125.201] 5| S1d0%22| 2|
7 [ow 0x0007 |KEDVR B 192.168.1577 20100203 113801 | 20100203 11:37:50 | 192.188.125.201 | 5| 1052902 2
% [or 0x0008 |KSDVR_C 192.165.1578 20100203 113801 | 20100203 11:37:50 | 192.188.125.201 5| 1A S| 55
7 [ow 0x0008 [KSEEFIDR | 192.168. 1578 20100203 113801 | 20100203 11:37:50 | 192.188.125.201 | 5| SAZSAB| 1
ENER Ox000A |KSEEFZDR | 192.168.157.10 20100107 10279 | 20100107 09:57:23 | 192.168.125.201 5| 070901 O
ENER Ox00F1 WD DVR test | 192.165.250.241 v asm i s0s | nan s anis s ez ans| 5| ors| 1| L
ENER Ox00FS |MD DR test2 | 192.165.250.2% 20100217 092256 | 20100217 0922196 | 192,180, 125.201 | 5| WA 20eaess| 12
53 |DiphaseCtr [0x0000 |MB_protoboard | 192,168,125, 135 20100217 09:25:11 | 20100217 09:22:% | 192188, 125.201 | 5| 60537
54 |Dicphasectr [0x0003 |PrCTIR TEST | 35.8.5757 2100212 154401 |01002-12 13i4w2a [50srazs | 5| W@2kEA| 7
85 |Diphasectr [0x0010 |Lo77RF 192.165.155.44 20100222 125619 | 20100222 1255140 | 192168, 125.201 5| 101455 %7
56 |Diphasectr [0x0020 |LosoRF F1 | 192,168, 15881 20100222 125613 | 20100222 1255140 | 192188, 125.201 5| 1053527 53
57 |Diphasectr [0x0021 |LossRF P2 | 192,166, 15883 20100222 125613 | 20100222 1255140 | 192188, 125.201 5| 105057 %5
55 |Diphasectr [0x0022 |LosRF F3 | 192,166 15885 20100222 125619 | 20100222 1255140 | 192188, 125.201 | 5| 10502 B
59 |Dicphasectr [0x0023 |Los2er 192.165.156.67 20100101 192531 | 20100101 1411112 | 192.168.125.201 | 5| 51022557 41
50 |EcRoven 00000 |vB_spare 192.165.125.133 20100223 090720 | 20100222 1255140 | 192.188.125.201 | 5| 10523 | 57
51 |EcRoven 00002 |EcROvEN 192.165.109.3 20100216 09:37:06 192.160.125.201 5| 84020951 54
52 [EcROven [0x00F3 |MDserBox | 192.166.250.293 w1002 001509 [mi0aet2vtsie ez S| Mz 0|
[0272472010 =] | Refresh | Adustcos | Tenet croadar | sendcmd ||
[85015: peters: 1, peType: QUERY

xxxx.

Appendix D: Programming and the Rabbit memory model

I am certainly no expert on the memory model of the Rabbit processors, or on important issues like how the Softools linker and the cstart module works, but I figured sharing what little I (believe) I know might save some of you from tearing your hair out.

For more accurate details on how the Rabbit memory models works, please be sure to consult the User Manuals for Rabbit processors. But for those that want a quick introduction or a refresher, the following is my understanding the basics.

D.1
Rabbit memory model

Except for a handful of special instructions, the Rabbit instruction set is limited to a 64K (16-bit) memory model. Like other processors derived from the original 8080 and Z80, the Rabbit adopted a “segmented” memory model that allows it to keep the 16-bit memory model for instructions (so larger/slower instructions are needed) but access a larger memory space.

The thing that most confused me about the memory mapping model (and often left me frustrated trying to understand the linker options and resulting output) is what determines which segment of memory will be used by a given instruction. I think that fact that Rabbit gave the segments names like Root, Data, Stack, and XPC just adds to the confusion, causing people (like me) to assume there was a direct relationship between the instruction type and the segment registers.

Below is my current understanding which I probably would have figured out much sooner if I hadn’t let the suggestive names distract me. Hopefully you will find this less confusing than I found the description in the manual:

· The 64K address space is divided in to 4 segments: Root, Data, Stack, XPC

· The value in the SEGSIZE register determines the start address (with 4K resolution) of the Data and Stack segments

· 3 registers (DATASEG, STACKSEG and XPC) are used to control where in the 20-bit address space 3 of the 4 segments are mapped to (Root always maps to 0)

· Which segment mapping is used to translate a given 16-bit address in to a 20-bit one is determined ENTIRELY by the current value of the SEGSIZE register (which determines which segment register – if any - is used to translate it) and the contents of the applicable segment register (DATASEG, STACKSEG, XPC, or none) which provides an offset to add to the 16-bit value.

· The TYPE of instruction does not matter. The 16-bit address space is broken in to 4 blocks and each block can be mapped to different portions of the 20-bit address space. Which block currently includes a given 16-bit address, and where the block is mapped to in the 20-bit space determines the physical memory location used.

Take for example an instruction that uses the stack pointer to compute a 16-bit memory address to read from or write to. The fact that it uses the stack pointer does NOT mean it AUTOMATICALLY uses the Stack segment. While it is true that, in practice, the stack pointer (and offsets from it) usually refer to addresses that are within the range configured for the segment called the Stack segment, the stack pointer could just as easily be set to an address outside that range, in which case one of the other 3 mappings would apply.

See what I mean about how the names given to the segments can cause confusion?

So, a bit more detailed look at how this works:

· The boundaries of the 4 segments (within the 16-bit address space) are determined as follows:

· The Root segment always starts at 0.

· The starting address of the Data and Stack segments can be set in 4K increments. The least significant 4-bits of the SEGSIZE register determines which 4K block the Data segment starts at, and the most significant 4-bits determines where the Stack segment starts at.

· The XPC segment always starts at the 4K block (0xE000).

· Each address in the 16-bit address space falls within the boundaries of one of the 4 segments. The equivalent 20-bit address is then computed as follows based on which the segment currently includes the 16-bit logical address:

· Root segment: 20-bit address = 16-bit address

· Data segment: 20-bit address = 16-bit addr + (DATASEG << 12)

· Stack segment: 20-bit address = 16-bit addr + (STACKSEG << 12)

· XPC segment: 20-bit address = 16-bit addr + (XPC << 12)

D.2
Memory model used by DEBROS

Like the SHDesign’s CoExec code it was derived from, the DEBROS task switcher assumes the following memory model:

· Data and Root segments are the same in both 16 and 20-bit address space and cover the range 0x0000 – 0xCFFF.

· The Stack segment covers the logical 16-bit address range 0xD000 – 0xDFFF. The thread of execution at startup becomes the kernel task and always has a 4K stack that resides at these same addresses in the 20-bit address space.

· The stacks for all other tasks are allocated in extended memory. Switching tasks includes changing the STACKSEG register so the 16-bit address range 0xD000-0xDFFF is mapped to the 4K block in the 20-bit address space that includes the stack for task we are switching to.

The primary advantages of this model:

· Use of a static Data segment starting at 0 maximizes the size of the “root” (16-bit) memory space that is shared by all tasks. This minimizes the need to use far pointers, which results in larger and slower code.

· None of the “root” memory space (0x0000 – 0xCFFF) is needed for stacks. This leaves more of the root memory available for global variables that are accessed frequently.
xxx

xxxx.
D.3
Near, far, and nearcall functions

Functions can be located anywhere in memory, but calling (and returning from) a function located in extended memory (0x0E000 – 0xFFFFF) must be handled differently than ones located in root memory (any memory mapped to 0x00000 0x0DFFF).
Technically speaking, a near function is one that can called from any location in memory by changing the value of the PC (Program Counter) register. For these functions, the value of the XPC (eXtend Program Counter) register remains unchanged. In practice, such functions are generally located in the root segment where their physical and logical address will always be the same (so you don’t have to worry about whether the memory they occupy is currently mapped in to the 0x00000 to 0x0DFFF memory space).
A near function is either called directly using the CALL instruction or by pushing the return value on the stack and executing a JP. This is what the stack looks like when a near function begins execution:

 <top of stack>

 PC (LSB)

 PC (MSB)

 args
Far functions can be located anywhere in extended memory (0x0E000 – 0xFFFFF), but they require a specific PC and XPC value to execute them. To transfer control to such a function, the values of both the PC and XPC registers must be changed within one instruction. The only two instructions that can do this are LCALL and LRET.

Calling a far function directly is as simple as calling a near function directly: You just use LCALL rather than CALL. The major difference is that LCALL has to save and modify the XPC register as well as the PC register, so it requires an extra byte of memory for the instruction and on the stack, and additional CPU cycles to execute. Returning from a far function is done using the LRET instruction, which pops the XPC and PC values from the stack.

Logically all far functions are located in the address range 0x0E000 to 0x0FFFF (an 8K window). The XPC register determines where in physical memory this 8K window is currently mapped to, allowing far functions to reside anywhere in the physical address range from 0x0E000 to 0xFFFFF.
This is what the stack looks like when a far function begins execution:

 <top of stack>

 PC (LSB)

 PC (MSB)

 XPC

 args
When you need to use a pointer to call a function, things get more complicated. Since the only form of the LCALL instruction is one that uses immediate operands (i.e. fixed values stored with the instruction), supporting pointers to far functions requires some sleight of hand. There are two ways that this can be done safely (i.e. in code that is reentrant): Calling a function in root memory and having it call the far function, or pushing the appropriate values on the stack and executing LRET.
To “call” a far function using the second method, you have to push the XPC and PC values for the called function’s LRET to use, compute and push the XPC and PC for the function to be called, then execute LRET. While this approach has the advantage of not using any root memory space, it requires many more bytes and CPU cycles than the redirector method. This is probably the reason that the Softools compiler does not support this method.
The redirector method works as follows:

· In many cases the compiler can figure out by the context that a far function needs a redirector (in general, this means a function’s address is referenced in the code). If you wish to avoid warning messages, or there is a case where the compiler cannot detect the need for a redirector, you can use the nearcall modifier to insure that a redirector is created for the function.

· The redirector consists of the following:

· 3 symbols are created for each function with a redirector:

· _myFarFunc: The location (in root memory) of the redirector

· $$myFarFunc: The location (in extended memory) of the entry point used by the redirector

· $myFarFunc: The location (in extended memory) used when directly calling the function from another function (i.e. NOT via a pointer to the function – e.g. ret = myFarFunc(x);)

· The redirector “function” consists of the following 2 instructions:
· POP IY

· LCALL $$myFarFunc
· The $$myFarFunc entry point consists of the single instruction:

· EX (SP),IY

· The $myFarFunc entry point (immediately following the EX instruction) is the actual function, unchanged in any way by the additional redirector code.

And this is how a redirector works:
· The redirector is called using CALL or (more likely) pushing the return address and then using JP (rr). Note that this leaves the value in the XPC register unchanged.
· The POP IY instruction in the redirector pops the logical (PC) portion of the return address from the stack, then uses LCALL to jump to the EX (SP),IY instruction that precedes the far function. This pushes the original caller’s XPC value and the address following the redirector’s LCALL instruction (the latter of which has no use).
· The EX (SP),IY instruction prefacing the actual function replaces the useless return address on the stack with the one from the original caller (which the redirector saved in IY). The end result is that, when the function begins execution, the stack looks just like it would have if it had been called using LCALL directly from the calling function. Except, of course, that we were able to get there using a pointer rather than a direct call.

· The function returns using LRET which returns to the original caller. Note that it doesn’t matter if it was called directly or via the redirector.

So, here is what the stack looks like at each stage:

 The stack upon entry to the redirector:

 <top of stack>

 PC (LSB) (logical return addr for the calling function)

 PC (MSB)

 args
 The stack upon entry to $$funcName

 <top of stack>

 PC (LSB)
(addr following the LCALL instr in the redirector)

 PC (MSB)

 XPC
(value in use by the original caller)
 args
 The stack after the "EX (SP),IY" instr at $$myFarFunc (i.e. when the PC == $myFarFunc):

 <top of stack>

 PC (LSB)
(logical return addr from original caller)

 PC (MSB)

 XPC
(from original caller)
 args
A clever (and pretty efficient) method of allowing far functions to be called using near pointers. It adds a handful of CPU cycles for each call, and a few bytes for each function. Nothing special needs to be done with the arguments already on the stack, and the function returns directly to the caller (not back to the redirector), so no overhead is added for the return from the function. And the function itself is not changed in any way. Normal direct calls (using LCALL) are not affected and are still used wherever possible.
Appendix E: To-do lists

List of things not done, known issues, improvements, etc.

E.1
Known limitations, bugs, issues

Blocking/non-blocking mode vs srfs driver.

RTC vs timerb, milliseconds and seconds counters, time(), gettimeofday(), settimeofday(), sub-second accuracy, etc.

E.2
Unfinished functionality

Signal handling.

Xxx

E.3
Planned improvements, wish-list

Larger tasks, major improvements

Improve timing of reading/writing analog and digital I/O values. Possibly drive this directly from the periodic timer interrupt, rather than doing it in the application process (which currently suffers from latency issues).

Consider alternative methods for triggering the generation of log messages from within the application loop, without actually slowing down the application task. This would require some sort of buffering, and means that messages would be lost if the buffer overflows.

Add interface for controlling real-time scheduling and support real-time vs “fair” scheduling (using something like the “Completely Fair Scheduler” algorithm now in the Linux kernel).

The BL2105’s anaInDriver() often returns an error (due, I believe, to the ADC not showing End-Of-Conversion true in the allotted time). Is there any way around this (aside from my temporary workaround of just using the last known good reading for the input)?

Implement stdout (>) and stdin (<) redirection (for use by scripts). Probably need to implement the syslog file system driver 1st, so the current workaround methods for catching output of tasks with no fd[1] and sending it to the system log (and the CheckETX workaround for tasks with no fd[0]) can be replaced with the syslog driver, which would avoid the need for more workaround checks when redirecting stdin and/or stdout. NOTE: Making /dev/syslog a driver would make redirection to the syslog useable with any command.

Implement environment variables (at least some fixed value ones) so scripts can use them to write output to device-specific file names. Very handy for things like dumping the contents of parameter files.

Need to add support for nested/dependent file descriptors to insure descriptors are not closed down in the wrong order. For example, an open srfs descriptor normally has an open socket descriptor it uses to communicate with the server. Closing the socket descriptor outside of the srfs driver (e.g. allowing killTask() to call close for the socket handle used by an srfs handle before calling close for the srfs handle) can cause problems (at the very least, confusing error messages, but possibly worse since the srfs handle has a reference to a socket handle that no longer exists). One possibility is to mark some descriptors as “hidden” when they are created by another driver, and not allow them to be closed via a normal close() call. That seems best, as it hides such handles from the application, but it has to be smart enough to allow the handle that owns it to manipulate it and close it. But it would avoid the need to have every process individually handle closing down its own (known) file descriptors to insure “nested” ones are not closed out from under their creators.

I should also add a function to the file system driver API to allow us to tell a driver to make sure all the driver-level descriptors are closed. Or, better yet, new calls that allow us to get a reference to each ioDev struct, determine its state (not just its description, as I have now). This could be used both to check for orphaned ioDev/device descriptors and to close them as desired (to free up orphaned descriptors and as extra insurance of a clean shutdown). And of course as a diagnostic aid, since there should never BE any orphaned device descriptors/ioDevs!

Smaller, minor improvements

Indicate which run-time (register) values are persistent.

Ability to view all analog and digital signal values in near real-time on a remote workstation (without having to define a register for each value).
Ability to monitor and reset the min/max value of values monitored by the “watch” command.

Option to disable the floating-point processing done each pass through the application loop for processing the analog I/O values.

Write “dump” command to dump the contents of one or more parameter files in a format that is human readable

syslog should not run indefinitely if its stdout is not a tty (e.g. when its output is piped through more). Then again, it might still want it to run indefinitely in some circumstances, so perhaps what I need is a command line option to specify continuous mode?

Additional things to document:

· Concurrency and locking: Unless the owning process itself is the only thread that EVER modifies it, all “kernel” structures must be locked. Even the process-level fd’s are just pointers to the global FDEV table, and since these are not only modified by the kernel but can be inherited by child processes, even they require locking.

· Memory protection mechanism and use by DEBROS
· xx

FNIS
- DEBROS Developer and User Manual -
2/28/13
4

