
 1

Calibration Procedures and Software for HiRA/LASSA
(Si detectors and CsI detectors)

Contents

0. Locations of codes and root version

1. Calibration Principles and Procedures
 1.1 Silicon detectors
 1.2 CsI detectors

 2. Instructions of Calibration Programs in Fitter package

2.1 Configuration file for Fitter
2.2 ThCalib

 2.3 Pulser
 2.4 CsICalib
 2.5 Manual Fitting
 2.6 Viewer

 3. Instructions of UnpackPid Programs
 3.1 Sum1dRaw
 3.2 Sum1d
 3.3 Summary
 3.4 CsI_Pid
 3.5 Si_CsI_Pid
 3.6 E_Csi_mev
 3.7 Etot

 4. Instructions of Other Relevant Programs
 4.1 Geant4
 4.2 Count
 4.3 SpectclPid – generation of root files
 4.4 Ziegler

5. Structure of Codes
 Structure of Fitter
 Structure of UnpackPid

 6. Others
 6.1 How to modify original SpecTcl to SpecTclPid (Pid parameters and do_root)
 6.2 How to make Pid gates from root file

 2

Chapter 0

Location of codes and ROOT version

• Root 4.00.08 should be used

 For LASSA calibrations

• "ThSource" in /projects/hira/lobastov/Th-LASSA/ for alpha source calcibration

• "CsIcalib" in /projects/hira/lobastov/CsICalib_cut-LASSA/ for CsI calibration.

• All programs are developed by Sergei Lobastov (Dubna)
• All programs are in /projects/proj4/hira/LS_program/ (Only for HiRA)

Chapter 1

Calibration Principles and Procedures

1.1 Silicon Detectors

228Th source is used for calibrations of silicon detectors. This source is characterized by
eight well-known alpha energies and the alpha peaks are separated by at least 100keV.
This allows clean identification and fitting of all energy peaks.

From the 1D raw Si histogram of each strip, we use the five strongest alpha peaks with
energies at 8.787, 6.778, 6.288, 5.685 and 5.423MeV. The corresponding peak channels
are found by fitting with a Gaussian function and the channel number for each peak is
then found. As the energy of each peak is known, we can establish a linear relation
between energy and channel by fitting those five peaks. This procedure is done
individually for all strips. Software routine “ThCalib” [2.1] in Fitter [Ch.2] is written for
this application.

 3

Figure 1.1 Energy spectrum of the 228 Th alpha source in a single strip.

If a dE silicon detector is placed in front of the double sided E silicon detector, the dE
detector can be calibrated by 228Th source as discussed above; while pin source is used to
calibrate E detector. The pin source is activated by electroplating the tip with daughter
nuclei from 228Th which emits strong alpha particles at 8.785MeV, 6.050MeV and
6.089MeV. Using the same procedure, we can calibrate each strip in E detector.

The linearity of the electronics system can be determined by ramping the pulser over the
ADC range, which gives information if further corrections in calibrations are needed. The
software “Pulser” [2.3] in Fitter is specialized for this application. In the experiment
02018, 02019, 02023, and 05038, good linearity is observed in dE detectors, but not in
EF and EB detectors.

1.2 CsI Detectors

The calibration of the CsI is accomplished through the normal data run combined with
corrections obtained from proton elastic scattering.

From the simulations package Geant4 [4.1], we can get the relation between energy
deposited in Si detector and CsI crystal for each particle by higher order polynomial
fitting (usually 5th order). With Si calibrations, we can generate 2D histograms with
calibrated Si E vs raw CsI E for each CsI crystal. Profile for each type of particle is made
from the histogram and the raw CsI E is converted to calibrated CsI E by applying the
parameters obtained from Geant4. A linear relationship is then established between CsI
energy and channel by fitting all different types of particles inside the profiles drawn. The

 4

software routine “CsICalib” [2.4] in Fitter package has been written specifically for this
application. This procedure is done individually for all four crystals in each telescope.

To get a more accurate calibrations for CsI detectors, including the correction of energies
lost in target, deadlayers and two mylar foils, the elastic scatting data with calibration
parameters obtained from normal data run are analyzed. Gate of each particle band is
created from normal data run and applied to the calibrated elastic scattering data as
shown below.

Figure 1.2 Histogram of calibrated elastic scattering data (Si vs CsI). Black points are
data and red bands are the gates from normal data run.

Sharp elastic scattering peaks are observed. The peak energies are then extracted by
fitting with single Gaussian function, and the energies of different particles deposited in
each CsI detector can be found.

 5

Figure 1.3 Histogram of proton, deuteron and triton peaks from elastic scattering data
gated by pdt cuts from normal data run.

Since the initial energies of incident particle are known from Bp value, we can use Lise
software to calculate the theoretical energies deposited in CsI crystals after taking the
effect of target and other materials into account. By comparing the theoretical energy
deposited and the energy loss obtained from calibrated elastic scattering data, we can
establish a linear relationship for each crystal by fitting one type of isotope. The slope
and intercept values are used to modify the previous calibrations and a complete
calibration for CsI are obtained.

Tele9 CsI2

y = 1.0404x - 3.9706

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80
E_root

E_
Li

se

p

t

d

Figure 1.4 Linear fit of calibrated proton, deuteron and triton peaks to Lise calculations.

 6

Program Etot [3.7] shows how accurate CsI calibration is by summing the energies
deposited in target, deadlayers, mylar foil, Si detectors and CsI detectors. The energies
loss in target, deadlayers and mylar foil are simulated by Ziegler [4.4]. Thus Etot gives us
the initial energy of incident particles deduced partly from calibrated data and partly from
simulations and then compares it with the energies calculated from Bp. Further
corrections in CsI calibration related to angular dependence will be included in Etot
program in the future.

The linearity of the electronics system can be determined by ramping the pulser over the
ADC range, which gives information if further corrections in calibrations are needed
[2.3]. In the experiment 02018, 02019, 02023, and 05038, good linearity is observed in
CsI detectors in the energy range we are concerned.

Chapter 2

Instructions of Calibration Programs in Fitter package

Fitter is a software combining six subroutines for calibrating Si and CsI detectors and
pulser fitting as well as spectra viewer and it can read both .asc files and .root files.

Make sure the configuration file (fitter.cfg) is in the same directory where you bring up
Fitter (type: /projects/proj4/hira/LS_program/Fitter/fitter). It is suggested to make a copy
of the coufiguration file (fitter.cfg) and put it in your working area, so that you can
specialize your own configuration file without corrupting the original one.

If you exit Fitter by Ctrl Z, you can re-activate the program by typing “fg".
You can select the detectors and telescopes you want to calibrate by going to “File” and
clicking “Select tele and plane”. You can also save the spectrum diplaced by using “Save
the avtive canvas” under “File”

 7

Figure 2.2 Fitter interface with “Select tele and plane” window

2.1 Configuration file for Fitter

fitter.cfg contains parameters needed for peak search and peak fitting. The fitter.cfg will
be automatically loaded when Fitter is activated. To change patameters in fitter.cfg after
Fitter is active, you can go to “File” and click “Parameter Editor”. A window will pop up,
then you can load, edit, save the fitter.cfg file and update parameters.

 8

Figure 2.2 “Parameter Editor” interface

Meaning of parameter in fitter.cfg

 9

CsICalib.para.XX Parameters for CsI calibrations for particle
XX, obtained from simulations Geant4

ThCalib.Alpha.Level.Energy Energy for each alpha peak
ThCalib.Alpha.Level.Prob Probability of peak, help peak search and

define the peak threshold [2.2]
ThCalib.Alpha.Level.LowD Width of left side of peak used for fitting,

unit: sigma from gaussina function
ThCalib.Alpha.Level.HiD Width of right side of peak used for fitting,

unit: sigma from gaussina function
ThCalib.spectrum.range.min Mimimum channel number for alpah peak

search
ThCalib.spectrum.range.max Maximum channel number for alpah peak

search
ThCalib.spectrum.sigma Peak with sigma larger than this value will

not be used (usually 5)
ThCalib.pedestal.thresh Threshold for Pedestal
ThCalib.pedestal.sigma Pedestal with sigma less than this value is

expected if fitting for Pedestal is needed
ThCalib.pedestal.shift Shift in channels for Pedestal; make sure to

get rid of pedestal from threhold file
Thcalib.matching.pedestal Matching pedestal (1=yes;0=no)
ThCalib.matching.deviation Show pedestal in deviation graph

(1=yes;0=no)
ThCalib.deadlayer.thickness.default Deadlayer thickness
ThCalib.resolution.peak.id Resolution for alpha peak (usually 4)
Pulser.basePeak.range Range for the maximum peak
Pulser.basePeak.overHeight Peak with height more than this multiple of

Max. peak will be regarded as pedestal
Pulser.basePeak.volts Voltage corresponds to the maximum peak
Pulser.peaks.step Voltage difference betweem two successive

peaks
Pulser.peaks.resol Resolution fo peak
Pulser.peaks.sigma Peak with sigma larger than this value will

not be used
Pulser.peaks.thres Fraction of the Max. peak. Only Peak with

height above this fraction will be used
Pulser.peaks.used.before Peaks before the maximum peak
Pulser.peaks.used.after Peaks after the maximum peak
Pulser.peaks.output.range Range of voltage being outputed

 10

2.2 ThSource

The program can automatically calibrate all spectrum when you click “All Spectra” icon.
Or you can calibrate the spectrun one by one by the button “Enter” on the keyboard.

After the calibration is finished, you have to go to “ThCalib” and click “Save offset/slope
vdef”. If you want to continue the calibration that has not been finished before, you can
first choose “load offset/slope vdef” and then calibrate the remaining spectra , so that
your vdef values will be written in the same vdef file.

You can clear the current loaded Spectra and calibration results in database by clicking
“Reset spectra list” and “Reset DB”.

Figure 2.3 Calibration of Th source. The top left panel shows the pedestal with red arrow
indicating the threshold level. The top right panel shows the alpha with Gaussian fitting.
The buttom left panel shows the linear fitting, and the right panel displays the deviation
of each peak fitting.

To look at the summary spectra and resolution plots of dE detectors, you can click
“de.summary” and “de.resolution” icons. Same as for EF and EB. Zoom function is
available.

 11

Figure 2.4 Interface for displaying summary histogram

To calibrate bad spectra with double peaks, we need to increase the ThCalib threshold.
ThCalib threshold is defined as 1-(max Prob - min Prob) / max Prob. For example, in the
configuration file, ThCalib.Alpha.Level.Prob : 814., 1029., 1120., 1034., 1564.
Then tresh = 1-(814. - 1029.) / 1564. %. Try to increase threshold parameter by
increasing the value of min Prob (eg, ThCalib.Alpha.Level.Prob: 1200., 1029., 1120.,
1034.,1564).

2.3 Pulser

Select the Pulser interface. Load the spectra by clicking “Pulser” and “Add Spectra to
list”. Use the “up” and “down” button on the keyboard to fit selected spectrum. You can
save peak parameter (eg, mean and sigma), fit parameter (slope, offset) and zero point
for each spectrum. You can also turn on the “matching log ON” under “Pulser” to save
each fitted spectrum into postscript file.

Linear fitting is the default function. To fit the peaks with higher order polynomial , go to
“Select func” and choose the order of polynomial function. Self-defined function is
available, but the initial value for each parameter should be defined.

 12

Figure 2.5 Interface for pulser fitting

2.4 CsI calibration

Click “CsiCalib” button to bring up the interface. Go to “CsICalib” and “Add Spectra to
list”. Open spectra file and use the “up” and “down” button on the keyboard to select
spectra for calibration. Click the particle button and draw the contour for that particle in
the spectra. Then click “Profile”. The program will take the verticle cut and get the mean
data point in each bin. To close the coutour, click the particle button again. Do the same
steps for other particles. After that, click the button “PolyFit” and the program will
establish the linear fit for all particles chosen and display it in the lower panel. If the
fitting is acceptable, click “Accept” to save the calibrated parameters in database;
otherwise repeat the above procedure (as shown in the figure). To use the cuts from the
previous spectrum instead of drawing cuts, you can click “Draw cuts” in the new
spectrum.

It is important to draw the contour with sharply verticle cuts because of the analysis
strategy and not include the data which reach the saturation line (eg: proton data below 2
MeV). Also, we calibrate CsI by either EF or EB. To avoid confusion, it is suggested to
select the EF or EB plane in “Select tele and plane” window before starting the
calibrations.

 13

Figure 2.6 Interface of CsI calibration. Red cut is the coutour for proton.

After the calibration is finished, you have to go to “CsICalib” and click “Save
offset/slope vdef”. If you want to continue the calibration that is not finished before, you
can first choose “load offset/slope vdef” and then calibrate the remaining spectra, so that
your vdef values will be written in the same vdef file.

You can clear the current loaded Spectra and calibration results in database by clicking
“Reset spectra list” and “Reset DB”.

2.5 Manual

You can use “Manual” to find the centriod of the peak from Gaussian fitting. Load the
spectra from “Maunal” and “Add spectra to list”. The icon range1-5 is for peak 1 to peak
5. If more than 5 peaks are needed to be fitted, change the number in the white box next
to “range 5” and click “range”. After clicking the range icon, go to the corresponding
peak and draw a line at the peak (as shown in the figure), then hit the button “Gauss”.
The peak information (eg mean, sigma) is shown in the SSH window. If the fitting is fine,
click “Accept” and the peak information are saved in the database; otherwise re-click the
range icon and repeat the procedure.

 14

Figure 2.7 Interface of peak fitting in manual mode.

Go to “Manual” and “save peak parameters” to save the peak information into file.
You can also reset the database and spectra list and print database by clicking the
corresponding icons under “Manual”

2.6 Viewer
Viewer provides a nice and quick interface to view specrea. Make sure to put the
executive file “viewer” in your bin area.

To run Viewer, go to “File” and “Viewer”, then a window will pop up. Go to “Open
spectra file” to load the asc file. Click “Disply” and highlight the spectra you want to
disply. Click “Apply”,then the selected spectra will be displayed one by one
automatically.

 15

Figure 2.8 Interface of Viewer with selection of spectra.

You can also choose the display geometry, save the active canvas and save the asc file to
root file.

Figure 2.9 Interface of Viewer with display geometry.

 16

Chapter 3

 Instructions of UnpackPid Programs

UnpackPid programs are developed to convert a packed file into its original form and
unpack the bytes to recreate the structures when reading. Four Unpack programs are
developed specifically for HiRA applications. Only histograms are generated (except Etot
with tree) after unpacking.

LRootEvent.cfg file contains parameters for Pack and Unpack modes. Parameters used
for both Pack and Unpack mode are related to experiment setting. We only need to
change the parameters used by Unpack mode only when we run the codes in UnpackPid.
Also make sure the root-file path is correct.

Both UnpackPid and SpectclPid use the same configuration file (LRootEvent.cfg). And
the configuration files in UnpackPid and SpectclPid are automatically linked.

Meaning of parameters used by Unpack Mode only and file path:

rootfiles.list Cluster file contains the run numbers (eg.

Run200.root)
vdeffiles.list File contains the names of vdef-files
rootfiles.outflnm Root file for output
pid.cuts.rootflnm Root file contain pid cuts
rootfiles.path Directory where root files are saved

Library: ../SpectclPid/wd/Linux-g++/SpecTcl/libSpecTcl.a

3.1 sum1dRaw
It reads root files listed in “rootfiles.list “ and creates 1D histograms for each strip in raw
channel.

3.2 sum1d
It reads root files in “rootfiles.list “ and creates 1D histograms for each strip in MeV.

 17

Figure 3.1 Histogram of 1D calibrated alpha peaks for one strip generated by sum1d
unpacker.

3.3 Summary
It reads root files in “rootfiles.list “ and creates summary histogram for each telescope in
MeV.

3.4 CsI_Pid (temp: eb__csi_pid)
It reads root files in “rootfiles.list “ and creates 2D histograms of either calibrated Si vs
calibrated CsI or calibrated Si vs raw CsI with Pid gates after matching all crystals. Also
it creates 1D CsI projection (MeV or Raw) with Pid gates for each particle in every
crystal.

Figure 3.2 Proton peak after proton cut gated on the elastic scattering data.

 18

Edit the source file “ CsI_Pid.cc” to choose CsI in MeV or in Raw. See below:

3.5 Si_CsI_Pid (temp: csi_eb_ef_Pid)
It reads root files in “rootfiles.list “ and creates 2D histograms of either calibrated Si vs
calibrated CsI with Pid gates after matching all crystals. Also it creates 1D Si and CsI
projection in MeV with Pid gates for each particle for each Si strip CsI crystal.

 19

Figure 3.3 Histogram of 1D Si projection from elastic scattering data after gated by
deuteron cut.

3.6 E_CsI_mev
It reads root files in “rootfiles.list “ and creates 2D histograms of calibrated Si vs CsI for
each CsI crystal. Edit the source file “ E_CsI_mev” to choose EF vs CsI or EB vs CsI.
See below:

3.7 Etot
Etot reads the final correction file generated from the linear fit of calibrated energy
deposited in CsI to Lise calculations and calls the program Ziegler to simulate energy loss
in target, deadlayers, mylar foil and Si detectors (or from calibrated Si data).
Then it generates histograms for dE vs E with energy loss in target, deadlayers and mylar
foils respectively, plot of Ecsi vs Etot and Trees for the calculated Etotal, Pid for each
telescope and the raw data with or without multipity for 1D projection of Si and CsI.

 20

Currently, Etot reads data from /evtdata/02023/lobastov/root-files and write data to root
(tree) in /evtdata/02023/lobastov/root-files/calibrated/ directory. You can change path
"/evtdata/02023/lobastov/root-files" into LRootEvent.cfg file.

Except L_Ziegler.o, the source, header and library files in Etot are the same as other
codes in UnpackPid.

Figure 3.4 Histogram of calibrated Si E vs calibrated CsI E with energy loss in the target.

Figure 3.5 Plot of energy deposited in CsI vs total energy from Etot Unpacker.

 21

Figure 3.6 Histogram of Pid for each crystal.

Chapter 4

Instructions of Other Relevant Programs

4.1 Geant4
(/projects/proj4/hira/LS_program/Geant4)

Genat4 simulates energies deposited in Si detectors and CsI detectors for different
particles. Edit “detector_setup.mac” to change the detector setting (in /mac/ area).
To simulate energy deposited:

1. Edit batch.mac to selete which particles will be stimulated . For each particle,
serveral commands in batch.mac sare needed.

 /user/rootflnm 4Hed.root
 /gps/particle alpha
 /gps/emin 50. MeV
 /gps/emax 260. MeV
 /run/beamOn 10000

 /user/rootflnm 6Hed.root
 /gps/particle ion (except p,d,t and 4He, other particles are named as “ion)
 /gps/ion 2 6 2 0.0 (charge, mass number, charge state)
 /gps/emin 50. MeV
 /gps/emax 260. MeV
 /run/beamOn 10000

 22

2. run batch file (batch.run)
3. run root and type “.L poly.C”
4. type “poly(“root-filename(no extention)”, event threshold,”order of polynomial

fitting”). Eg: poly(“4He”,2,”pol5”). Then the fitting parameters are generated.
5. save the parameters by typing “save(filename)”

Figure 4.1 Geant4 simulations for proton. The parameters are shown in SSH window.

4.2 Count
(/projects/proj4/hira/LS_program/Misc)

Count.C allows us to count the events inside a defined coutour. The procedures are the
follows:

1. run root, type “Tbrower b”; open the .root file
2. type “.L counter.C “ (draw TH2 into cancas)
3. type “_makeTCutG(“cutname”)” , then click mouse left botton on TH2 to create

coutour.
4. type”_count(“filename.root”,”histname”,”cutname”)”,eg _count().The number

of event will then displaced.

 23

Figure 4.2 Counting event inside the coutour, number of count is displayed in the SSH
window.

4.3 SpectclPid – generation of root files
(/projects/proj2/02023/lobastov/SpectclPid)

To generate root file (raw data) with pid parameters, we have to use SpectclPid. First.
bring up SpectclPid and go to “Variables” in GUI interface. Then click “Variable” and
select “user.do.root”. Change “value” from “0” to “1” and click “Set”. Finally, go to
Spectcl Control and attach evt files.

Figure 4.3 SpecTclPid interface for generating root files.

 24

You can edit LRootEvent.cfg file (rootfiles.path) to change path where the root files are
saved. Both SpectclPid and UnpackPid use the same configuration file
(LRootEvent.cfg). And the configuration files in SpectclPid and UnpackPid are
automatically linked.

4.4 Ziegler
A program (no source code) incorprated in Etot code to simulate the energy deposited in
deadlayer, mylar foil and detectors.

Chapter 5

5.1 Structure for Fitter code

Base class LSFrame

Derived class:
class LSAutoFitter
class LSManualFitter
class LSCsICalib
class LSPulser
class LSResolution
class LSSummary

Main class:
class LSDefData
class LSHiraSetup
class LSFile

Service class:
class LSEditConfig
class LSPolyFunctionFrame
class LSTutils
class LSutils
class LSFitData

Applications:
Viewer, Pulser, ThCalib, CsICalib, etc

 25

Descriptions of Fitter codes:

Header files (include) Corresponding source files (src) Descriptions
LSAutoFitter.hh LSAutoFitter.cc ThSource (Auto mode)
LSManualFitter.hh LSManualFitter.cc ThSource (Manual mode),

Peak100 (for Th or Pulser)
LSResolution.hh LSResolution.cc ThSource resolution frame
LSSummary.hh LSSummary.cc ThSource summary frame
LSCsICalib.hh LSCsICalib.cc CsI Calibration
LSPulser.hh LSPulser.cc Pulser
LSFrame.hh LSFrame.cc Abstract base class for

AutoFitter,
ManualFitter,Resolution,
Summary, CsICalib and
Pulser

LSMainFrame.hh LSMainFrame.cc GUI interface for main
window (Create main
window)

LSDefData.hh LSDefData.cc Interface to “database”
OST-offset, slope, thres;
CORR-correction for CsI
calibration; GS-gauss fitting
parameters

LSHiraSetup.hh LSHiraSetup.cc GUI interface for select tele
and plane frame (Create
transient window)

LSFile.hh LSFile.cc Interface to read, write,
looking for, converting from
ASCII spectrum to TH1
histogram

LSFitData.hh Interface for gauss fitting,
parameters saving, preparing
for fitting

LSEditConfig.hh LSEditConfig.cc GUI interface for
configuration file editing
(Create transient window)

LSPolyFuncFrame.hh LSPolyFuncFrame.cc GUI interface for fitting
function choice (Create
transient window)

LSMultPid.hh LSMultPid.cc GUI interface for summary
and resolution spectras

LSTutils.hh Contain some utilits
functions (based on ROOT)

LSutils.hh Contain some utilits
functions

 26

 Spectcls often have slightly different naming systems (eg, slope.1 – eslope.01). To be
sure the vdef file generated from Fitter can be read by SpecTcl, changes in
“LSDefData.hh” is needed (shown as follows) [%02d means two digits]

To have more options of particles used for CsI calibrations, you need to run Geant4 first
and then edit the file “LSCsICalib.cc” to add the corresponding button in the Fitter
interface. Also edit /SpectclPid/src/Ldirectory.cpp/ to include the new particle to Pid gate
parameters (See below).

“LSCsICalib.cc”:

“Ldirectory.cpp”:

 27

5.2 Structure for UnpackPid and spectclPid

Descriptions of UnpackPid and SpecTclPid codes:

Header files (include) Descriptions
LRootEvent.hh Main control class
LDirectory.hh Abstract base class for HiRA, S800, MCP and

Physics; interface for branch creation; open and
close root files; read branch list from file;
activate(deactivate) branch; etc

LHiRAData.hh Concrete instance of base class for Hira
LS800Data.hh Concrete instance of base class for S800
LPhysicsData.hh Concrete instance of base class for Physics
LMCPData.hh Concrete instance of base class for MCP

 Main class:
class LSDefData
class LSHiraSetup
class LSFile

Applications:
SpectclPid,
UnpackPid (Summary.cc, csicalib.cc,
Etot.cc, sum1d.cc, sum1dRaw.cc, etc)

Base class LDirectory

Derived class:
class LHiRaData
class LS800Data
class LMCPData
class LPhysicsData

Singleton class:
class LrootEvent

 28

Chapter 6

Others

6.1 How to modify the original SpecTcl to SpecTclPid

To modify the original SpecTcl to the SpecTclPid which contains the Physics Pid
parameters, we need to do the following mdifications.

ADD

TreeParameter.h :

 class CTreeParameter
 {
 public:
 double* GetAddress(void){return &value;}; // LSP
 string GetName(void){return name;}; // LSP
 }

CUser.cpp:

 #include "LRootEvent.hh"
 CUser::OnBegin(){
 if(do_root) LRootEvent::getInstance()->PackBeginOfRun(RunNumber);
 }
 CUser::OnEnd(){
 cout<<"\n[CUser::OnEnd]"<<flush;
 if(do_root) LRootEvent::getInstance()->PackEndOfRun();
 }
 CUser::OnAttach(){
 vector<CTreeParameter*>::iterator cur; LParameterSet *ptr =
LRootEvent::getInstance()->GetMap();
 for(cur = CTreeParameter::pSelf.begin(); cur != CTreeParameter::pSelf.end(); cur++)
 ptr->AddNameAddress((*cur)->GetName().c_str(), (*cur)->GetAddress());
 LRootEvent::getInstance()->Initialize();
 }
 CUser::operator(){
 if(do_root && evtNum < max_evts){
 LRootEvent::getInstance()->PackEndOfEvent();
 if((++evtNum) == max_evts) LRootEvent::getInstance()->PackEndOfRun(); }
 }

void CUser::Initialize()
{
 do_root.Initialize("user.do_root",0,"au");
 max_evts.Initialize("user.max_evts",1000000,"counts");
}

 29

CUser.h:

class CUser : public CEventProcessor
{
public:

 CTreeVariable max_evts;
 CTreeVariable do_root;

CHiRAS800SpecTclApp.cpp:

 #include "LRootEvent.hh"
 CSpecTclApp::~CSpecTclApp(){
 delete LRootEvent::getInstance();
 }

Include LphysicsData.cpp

CHANGE

CHiRAS800SpecTclApp.cpp:

 #include "./treeparam/TreeParameter.h" --> #include "TreeParameter.h"
 #include "./treeparam/TreeVariable.h" --> #include "TreeVariable.h"

 #include "./s800_spectcl/CS800SpecTclApp.h" --> #include "CS800SpecTclApp.h"
 #include "./s800_spectcl/CS800.h" --> #include "CS800.h"
 #include "./s800_spectcl/CS800Unpacker.h" --> #include "CS800Unpacker.h"
 #include "./s800_spectcl/CS800Calibrator.h" --> #include "CS800Calibrator.h"
 #include "./s800_spectcl/CS800Calculator.h" --> #include "CS800Calculator.h"
 #include "./s800_spectcl/CS800Snapshot.h" --> #include "CS800Snapshot.h"

CAsic.cpp, CHiracpp, CUser.cpp, CPhysics.cpp, CCsi.cpp, CDecpp, CClassical.cpp:

 #include "./s800_spectcl/CS800.h" --> #include "CS800.h"

 30

6.2 How to create Pid gates from root file

1. root; Tbrowser b; (choose the histogram)
2. type “.L makeTCutG.C”
3. _help()
4. _makeTCutG(k1H) (draw gate)
5. _saveTCut(k1H,”name.root”)

Figure 6.1 Generation of cut from histogram.

