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Abstract

A remarkably simple dependence of fragmentation cross-section on average binding energy has

been established in experimental data. This dependence was empirically parametrised leading

to a very useful formula for extrapolation. We find that the canonical thermodynamic model,

which has been used in the past for successful computations of many observables resulting from

multifragmentation, reproduces the salient fetures of fragmentation cross-sections of very neutron

rich nuclei very well. This helps towards a theoretical understanding of the observed data.
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As part of a drive towards understanding the production mechanisms of rare isotopes,

fragmentation cross-sections of many neutron rich isotopes have recently been measured

from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets [1]. Copper

isotope cross-sections have been measured in projectile fragmentation of 86Kr at 64 MeV per

nucleon [2]. A remarkable feature is the correlation between the measured fragment cross-

section and the average binding energy (Fig.1)[3]. This observation has prompted attempts

of paramtrisation of cross-sections. One very successful parametrisation[3] is

σ = C exp(A−1(B − εpair)/τ) (1)

Here B is the binding energy of the nucleus with mass number A, εpair = κεA−3/4 and κ is

1 for even-even nuclei, 0 for odd-even nuclei and -1 for odd-odd nuclei. The pairing term

smooths the straggling seen in the data when logarithms of cross-sections are plotted against

B/A for even-even and odd nuclei (or odd-even and odd-odd nuclei). Theoretical basis for

the simple appearence of B/A or the pairing term correction is not transparent. Another

equation which is highly successful is

σ = cA3/2 exp[(Nµn + Zµp + B − εpair + Es.min(Sn, Sp, Sα))/T ] (2)

For values of parameters and details see [4].

Here we do calculations for the production cross-sections of silicon isotopes from projectile

fragmentation of 48Ca and of copper isotopes from projectile fragmentation of 86Kr using the

canonical thermodynamic model. Some of these cross-sections are very small and they serve

as very stringent tests of the model. The model has been extensively applied for production

cross-sections of other particles which are more numerous [5] and agreements are good. The

basic physics of the model is the same as in many other models of intermediate energy heavy

ion collisions: the statistical multifragmentation model (SMM) [6] or the microcanonical

simulations of heavy-ion collisions [7, 8]. But SMM or the microcanonical simulations are

totally impractical for calculations of very small cross-sections as they rely on Monte-Carlo

simulations. The canonical model gives closed expressions and calculations can be made as

accurate as desired. The grand canonical model is unsuitable for exploring these furthest

limits of the phase-space and is expected to be very unreliable [5, 9]. We will come back to

this point later.

We will consider production of silicon isotopes from the statistical break up of 48
20Ca. We

denote the avaerage number (multiplicity) of 14Sin by 〈n14,n〉. Then the cross-section will be
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σ(14, n) = C〈n14,n〉 where C is a constant not calculable from the thermodynamic model. It

depends upon dynamics which is outside the scope of the model. Similarly we will consider

the production of Cu isotopes 29Cun from a source which has 36 protons and 50 neutrons,

i.e., 86Kr. The source sizes adopted for the calculation are zero order guesses. It could be

sometimes smaller or greater depending on the diffusion from the target.

We will write down the formulae used for the calculations but we will not derive them as

they can be found elsewhere [5, 10]. The fragmenting system (48Ca or 86Kr) has Z0 protons

and N0 neutrons. The canonical partition function is given by

QZ0,N0
=

∑ ∏ ω
ni,j

i,j

ni,j!
(3)

Here the sum is over all possible channels of break-up (the number of such channels is

enormous) which satisfy Z0 =
∑

i × ni,j and N0 =
∑

j × ni,j ; ωi,j is the partition function

of one composite with proton number i and neutron number j respectively and ni,j is the

number of this composite in the given channel. The one-body partition function ωi,j is a

product of two parts: one arising from the translational motion of the composite and another

from the intrinsic partition function of the composite:

ωi,j =
Vf

h3
(2πm(i + j)T )3/2 × zi,j(int) (4)

Here m(i + j) is the mass of the composite and Vf is the volume available for translational

motion; Vf will be less than V , the volume to which the system has expanded at break up.

We use Vf = V − V0 , where V0 is the normal volume of nucleus with Z0 protons and N0

neutrons. In this calculation we have used a fairly typical value V = 6V0.

The probability of a given channel P (~ni,j) ≡ P (n0,1, n1,0, n1,1......ni,j .......) is given by

P (~ni,j) =
1

QZ0,N0

∏ ω
ni,j

i,j

ni,j!
(5)

The average number of composites with i protons and j neutrons is seen easily from the

above equation to be

〈ni,j〉 = ωi,j
QZ0−i,N0−j

QZ0,N0

(6)

The constraints Z0 =
∑

i× ni,j and N0 =
∑

j × ni,j can be used to obtain different looking

but equivalent recursion relations for partition functions. For example

QZ0,N0
=

1

Z0

∑

i,j

iωi,jQZ0−i,N0−j (7)
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These recursion relations allow one to calculate QZ0,N0

We list now the properties of the composites used in this work. The proton and

the neutron are fundamental building blocks thus z1,0(int) = z0,1(int) = 2 where 2

takes care of the spin degeneracy. For deuteron, triton, 3He and 4He we use zi,j(int) =

(2si,j + 1) exp(−βei,j(gr)) where β = 1/T, ei,j(gr) is the ground state energy of the compos-

ite and (2si,j +1) is the experimental spin degeneracy of the ground state. Excited states for

these very low mass nuclei are not included. For Si and Cu nuclei whose production cross-

sections are sought in this work we use the experimental binding energies tabulated in [11]

but also include a term for contribution from excited states (see the discussion following).

For mass number A = 5 and greater (but charge 6= 14(29)) we use the liquid-drop formula.

For nuclei in isolation, this reads (a = i + j)

zi,j(int) = exp
1

T
[W0a − σ(T )a2/3 − κ

i2

a1/3
− s

(i − j)2

a
+

T 2a

ǫ0

] (8)

The derivation of this equation is given in several places [5, 6] so we will not repeat the

arguments here. The expression includes the volume energy, the temperature dependent

surface energy, the Coulomb energy and the symmetry energy. The term T 2a
ǫ0

represents

contribution from excited states since the composites are at a non-zero temperature. This

form was used in other applications of the model and we have kept this unchanged. This

term is also included in z14,n(int)(z29,n(int)). Note that in the fitting formula of Eq.(2) a

different expression for contribution from excited states is used.

We have to state which nuclei are included in computing QZ0,N0
. For i, j, (the proton and

the neutron number) we include a ridge along the line of stability. The liquid-drop formula

above also gives neutron and proton drip lines and the results shown here include all nuclei

within the boundaries.

The long range Coulomb interaction between different composites can be included in an

approximation called the Wigner-Seitz approximation. We incorporate this following the

scheme set up in [6].

It remains now to state the results. Fig.1 taken from [3] shows the remarkable correlation

between experimental values of cross-sections of silicon isotopes (from 48Ca on 9Be reaction at

140 MeV per nucleon) and average binding energies. The experimental data on cross-sections

(shown as solid symbols in this paper) span about seven orders of magnitude. In Fig.2 we

show results of our calculations(crosses). There are basically two parameters: an overall
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normalisation factor (chosen in the figure to give the correct value of cross-section for 28Si)

and the temperature (taken here to be 9.5 MeV which is within the range of temperatures

expected for this reaction). Except at the tails of the distribution, the agreement is fair and

the calculation does indeed give the very rapid decrease of the cross-section for large A. The

straggling in values of the cross-sections between even-even and odd nuclei is also reflected

in the calculation. In Fig.3 we compare data and calculations for the case of production of

copper isotopes. The data here span more than eight decades and the calculation, except

for the tails, does very well. The straggling between cross-section values for odd-odd and

odd copper isotopes is highlighted in Fig.4. In the same figure we show that both for data

and calculation the straggling disappears if the cross-section is plotted against 〈B〉 − εpair

rather than against just 〈B〉 (see also [4]). We find it gratifying that the model is able to

reproduce such fine details.

Lastly, we will make a connection with grand canonical fitting of the data [4]. In our

model we use σ(z, n) = C〈nz,n〉 where the value of C has to be taken from experiment. Thus

in a model of this type what we need is the ratio 〈nz,n+1〉/〈nz,n〉 to be predicted correctly.

From Eq.(6) this is

〈nz,n+1〉

〈nz,n〉
=

ωz,n+1

ωz,n

QZ0−z,N0−n−1

QZ0−z,N0−n

(9)

Here Z0, N0 are the charge and neutron number of the projectile which is fragmenting (86Kr

or 48Ca) and (z, n) denotes Cu or Si isotopes. The right hand side of eq.(9) is very simple in

the grand canonical ensemble. The ratio of the two canonical partition functions is replaced

by a term independent of n, i.e., the right hand side is simply ωz,n+1

ωz,n
exp(βµn) where µn is

a constant for all n, z. That would be correct if Z0 and N0 are large and also Z0 ≫ z and

N0 ≫ n whereas in small systems such as here, the ratio of the partition functions varies as

n changes. As we approach neutron drip line it drops fast with n. In order to approximate

the right hand side of eq.(9) by the simpler expression ωz,n+1

ωz,n
exp(βµn) we need to choose µn

judiciously and further alter the value of the temperature from the one used in the canonical

model. In that case the temperature has to be significantly reduced.

In conclusion, the canonical model reproduces the salient features of production cross-

sections of very neutron rich nuclei. The empirical formulae for extrapolation [3, 4] are very

useful and the canonical thermodynamic model can not hope to replace these but it aids

to a theoretical understanding of the data. The same parameters that we have used here
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can be used to predict the production cross-sections of intrermediate mass fragments or the

properties of the largest fragment after mutifragmentation [12].
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FIG. 1: Fragment cross-section and average binding energy plotted as a function of mass number

for silicon isotopes.
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FIG. 2: Experimental cross-sections for silicon isotopes (points) compared with theoretical results

(crosses). A dotted line is drawn through the experimental data and a solid line through the

calculated values. The temperature used is 9.5 MeV. Normalisation constant for theory is chosen

by fitting to the experimental cross-section of 39Si

.
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FIG. 3: Same as in Fig.2 but for Cu isotopes. Normalisation for theory is chosen from experimental

value for 75Cu.
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FIG. 4: Straggling of data between odd-odd and odd-even cases (points) when plotted against the

average binding energy < B >= B/A. Similar scatter is seen in theoretical calculation. On the

right panel the cross-sections are plotted against < B > −εpair (see eq.(1)). The value of ε used

here is 30 MeV. This decreases the straggling significantly both for data and theory.
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