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Abstract

A great many observables seen in intermediate energy heavy ion collisions can be explained on the basis of
statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble
(energy and number of particles in the system are kept fixed), canonical ensemble (temperature and number of
particles are kept fixed) or grand canonical ensemble (fixed temperature and a variable number of particles but with
an assigned average). This paper deals with calculations with canonical ensembles. A recursive relation developed
recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the
nature of phase transition in intermediate energy heavy ion collision, to study the caloric curves for nuclei and to
explore the possibility of negative specific heat because of the finiteness of nuclear systems. The model can also
be used for detailed calculations of other observables not connected with phase transitions, such as populations of
selected isotopes in a heavy ion collision.

The model also serves a pedagogical purpose. For the problems at hand, both the canonical and grand canonica
solutions are obtainable with arbitrary accuracy hence we can compare the values of observables obtained from
the canonical calculations with those from the grand canonical. Sometimes, very interesting discrepancies are
found.
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To illustrate the predictive power of the model, calculated observables are compared with data from the central
collisions of Sn isotopes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a central collision of two heavy ions. Nucleons from one nucleus will collide with nucleons
from another nucleus. After a few collisions a given nucleon may lose the identity of its source. The system
then more resembles a hot fluid of nucleons in an overall volume. Depending upon the original beam
energy, this system may undergo an initial compression and then begins to decompress. During this time
the nucleons will interact with each other, at least between the nearest neighbours. As the density of the
system decreases, higher density regions will develop into composites. As this collection of nucleons begin
to move outward, rearrangements, mass transfers, nucleon coalescence and most physics will continue
to happen until the density decreases so much that the mean free paths for such processes become larg
than the dimension of the system. Subsequently, the objects follow the long-range Coulomb trajectories.
Our objective is to have a soluble model which describes the physics of the situation at this freeze-out
density when one averages many nucleus—nucleus collisions.

Although we chose central collisions to describe this scenario a similar situation will arise even for
semi-central or semi-peripheral collisions. In such cases, one may have a projectile like fragment (and
target like fragment and participants, region of violent collisions). For example, a projectile fragment
may be excited which resembles a system of hot particles whose centre of mass velocity is close to that
of the projectilg/1].

The central assumption of the present article (and many others) is that equilibrium statistical mechanics
can be used to describe the hot fluid of nucleons. Even the most well prepared experimental measure-
ment of an energetinucleus—nucleusollision represents an average of a very large number of initial
states. In addition to this large number of different initial states, a large numbarctéon—nucleon
collisions occur within eachucleus—nucleusollision. Together, this means that for many experimental
observables almost all the relevant phase space can be opened up and described by the microcanor
ical ensemble in which the probability of reaching a channel Q(y)/zy Q(y). Here Q(y) is the
phase-space volume in the changeln the canonical ensemble, the corresponding expre$2jois
written as exp—f(y)/T)/Y_exp(—f(y)/T). Here f(y) is the free energy in the channgl Since
f(»y)=—TInQ(y), whereQ(y) is the canonical partition function in the changehln equivalent ex-
pression isQ(y)/ Y. Q(y). A more detailed discussion of statistical equilibrium using reaction rates is
given in Appendix A.

The obvious experimental observables in heavy ion collisions are the number of nucleons and compos-
ites and their velocity distributions that result after the collision. The calculation of these in equilibrium
statistical mechanics for Bevalac physics is more than 25 yeaf3-éidi At that time, the grand canonical
ensemble was used to describe the data from the Bevalac, which normally used beam energies higher that
250 MeV/nucleon. However, at these energies most of the subtle and interesting features of equilibrium
statistical mechanics as it pertains to heavy ion collision disappear. As the cross-sections of composites
fall rapidly with A, the mass number, the most interesting results were productions of new particles such as
pions and kaons, which can be included in the statistical model. Some discussion of this production is also
given in Appendices A and C. Even so, Bevalac experiments brought out beautiful features of dynamics
and established narrow limits on compressibility of nuclear matter and the momentum dependence of the
real part of the optical potential.

The applications of equilibrium statistical mechanics for intermediate energy heavy ion collisions
started in the 1980s. At these energies, the efforts switched to microcanonical ensembles although the
concept of temperature was sometimes yged]. One model called the Copenhagen SMM (statistical
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multifragmentation model) is frequently usfg]. Another popular model is the Berlin mod&l. The

use of the canonical ensemble, the main topic of this paper, is more {8gdhts as easy to implement

as the grand canonical (and more accurate since fluctuations in the number of particles are eliminated:
these sometimes cause large errors in computations of observables). It is orders of magnitudes simpler
than the microcanonical ensemble, although in the latter more fine tuning can be done. These fine tunings
do not appear important for most observables.

What are the important issues we want to learn about in intermediate energy heavy ion collisions? For
many, it is to extract from data signals of a liquid—gas phase transition in nuclear matter. Nuclear matter
is a hypothetical large chunk of matter with= Z, where the Coulomb interaction has been switched
off. The p—V diagram for nuclear matter with reasonable forces looks like a Van der Waals equation of
state[10]. One would then expect to see a liquid—gas phase transition if the experimental conditions are
optimal. Such optimal conditions are discussed by Curtin ¢iL.4].and Bertsch and Siemefi2]. For
Bevalac energies the evolution of the temperature would go above the phase transition temperature. But
accelerators at the National Superconducting Cyclotron Laboratory (NSCL), the Texas A& M cyclotron,
the Grand Accelerateur National D’ions Lourds (GANIL) and at Gesellschaft fur Schwerionenforschung
mbH (GSI) can reach the liquid—gas phase transition region and offer the best possibility for experimental
study. Further details of theoretical considerations which prompt an experimental investigation of the
liquid—gas phase transition can be foundig].

Unfortunately, the investigation of liquid—gas phase transition in intermediate energy heavy ion colli-
sions is fraught with many difficulties. Phase transitions occur in very large systems. In nuclear collisions,
we are limited to 300—400 nucleons (sometimes much less). For finite systems, signals of phase transition
get diluted and distinctions between first- and second-order transitions get blurred. The Coulomb inter-
action, which prevents large nuclei from forming, also interferes with the signals. It is thus necessary to
use theories to clarify the situation. If one has a theory which fits many data, not necessarily related to
phase transitions, but which, in addition, predicts a phase transition one has some hope for the model to be
valid. In this paper we will discuss phase transitions and in addition, data which will be compared to the
thermodynamic model predictions.

2. The basic formulae

This section sets up the basic formulae of the m¢@dH].
If there areA identical particles of only one kind in an enclosure at temperdtuiee partition function
of the system can be written as

1
0 ()? . 1)

T Al

Here w is the partition function of one particle. For a spinless particle without any internal structure
w=(V/ h3)(2nmT)%/?, wheremis the mass of the particl¥,is the available volume within which each
particle moves and! corrects for Gibb’s paradox. If there are many species, the generalisation is

01=Y 11 “j;l?! - @
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Herew; is the partition function of a composite which hiasucleons. For a dimer= 2, for a trimer

i = 3, etc. Eq. (2) is no longer trivial to calculate. The trouble is with the sum in the right-hand side of
Eqg. (2). The sum is restrictive. We need to consider only those partitions of the ndmidech satisfy

A =) in;. The number of partitions which satisfies the sum is enormous. We can call a given allowed
partition to be a channel. The probability of the occurrence of a given ch&@tig= P (n1, n2, ns, ...)

is

- 1 ;)"
P = o [T @
The average number of composites aticleons is easily seen from the above equation to be
= 20 @)
Since) in; = A, one readily arrives at a recursion relat{ds]
1A
Qs = 1 ]; kokQa—k - (5)

For one kind of particleQ 4 above is easily evaluated on a computerAas large as 3000 in a matter
of seconds. It is this recursion relation that makes the computation so easy in the model. Of course, once
one has the partition function, all relevant thermodynamic quantities can be computed.

We now need an expression i@f which can mimic the nuclear physics situation. We take

%
Ok = 33 QunT)¥? x g, (6)

where the first part arises from the centre of mass motion of the composite whikmbelgons andy

is the internal partition function. Fdr= 1, ¢y = 1 and fork >2 it is taken from the Fermi-gas model.
For each composite consisting lofiucleons, we approximate the intrinsic free energy at freeze-out by
E—TS=—Wok 4+ o(T)k?3 + kT?/cog — T x 2kT /eo, Wherezg is a constant. This gives

qr = expl(Wok — a(T)k?/® + T%k/e0)/ T . @)

Here, as in[8], Wp = 16 MeV is the volume energy term ard7) is a temperature-dependent sur-
face tension term. The value @f is taken to be 16 MeV. The explicit expression &) used here,
asin[8], is

o(T) = ao[(TZ — T?) /(T2 + T?)1”*

with 69 =18 MeV andl, = 18 MeV. In the nuclear case, one might be tempted to intexpoéEq. (6) as

simply the freeze-out volume, but it is clearly less than thas; the volume available to the particles for

the centre of mass motion. Assume that the only interaction between clusters is that they cannot overlap
one another. Then in the Van der Waals spirit, we tBke Vieeze— Vex, WhereVey is taken here to be
constantand equal &)= A/pg. The assumption that the interaction between different composites is only
reflected through an excluded volume and that this excluded volume is independent of multiplicity is an
idealisation which will fail for a non-dilute system. We therefore restrict the model, somewhat arbitrarily
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to volumesVieeze> 2Vo. There are experimental signatures thiglezeis indeed greater tharVg [13] so
this is not a debilitating feature of the model. In all our considerations we restpgtto less than 0.5.

Among quantities of interest is the inclusive cross-section given by Eq. (4). Actually, this is a simplifi-
cation. The occupation given by Eq. (4) is the occupation of the composite mittieons at temperature
T. Both the ground state and the excited states contribytg tdSome of the excited states will be particle
unstable and will decay into lower mass composites before they reach the detector. On the other hand,
some higher mass composites, will, by the same argument, decay into the compndéter sections,
where we compare populations with data, this aspect will be taken care of. The expresEiahd@iven
temperaturd is simple (this is needed for a caloric curve which is measured in experiments). The energy
carried by one composite is given by

Ex=T%INoy /0T = 3T + k(—=Wo + T?/e0) + o(T)k?® — T[0a(T) /AT 1K?/3 .

Of these, the first term comes from the centre of mass motion and the reggfrohe term? [00(T) /0T ]

k?/3 comes from the temperature dependence of the surface tension. It has a small effect. The energy of the
whole system is given b = T2(1/Q4)00Q 4 /0T . Using Egs. (2) and (4) we arrive at a very transparent
formula: E =) (nx) Ex. The pressure is given y= TdIn Q 4 /3V. If for purposes of illustration, we
neglect the long-range Coulomb interactions and use Egs. (2) and (4), we-g€(1/V) > (n;). This

is just the law of partial pressures.

For the purpose of analysing phase transitions in the model, it is very useful to calculate the av-
erage value of the largest cluster in the ensemble. Eq. (2) shows that the size of the largest cluster
varies. In that ensemble there is a ternfl/A!. For this the largest cluster is the monomer. For exam-
ple, in Eq. (2) we also have a termf{/n!)a);A/z_”/Z)/(A/Z — n/2)!. Here the largest cluster is the
dimer. Consider buildingD 4 with w1, w2, ..., w;,0,0,0,0,... . In this ensemble the largest clus-
ter will span from a monomer upto a composite witimucleons. Let us label this partition function
Oa(wy, w2, ...,w,0,0,0,...). Letus also build @ 4 where the largest non-zeis w;_1. The parti-
tion function isQ 4 (w1, wo, ..., wx—1, 0, 0, 0, 0). In this ensemble all the previous channels are included
except where the largest cluster Haducleons. If we define

AQatk) = Qa(w1, w2, ..., 0,0,...) — Qalw1, w2, ..., wr-1,0,0,...),
then the probability of the largest cluster havikgucleons is

AQ (k)

Prk) = .
Oalw1, w2,...,w4)

(8)

If we now label the average value of the largest clustekagy), then(kmax) = Y _ k x Pr(k). A more
useful quantity iSkmax)/A. The limits of this arex 0 and 1.
Another interesting quantity which has been the subject of an enormous amount of interpf&idtion
is the multiplicity distribution of a species or a group of species. In most models, this requires a very
elaborate Monte-Carlo calculation. In the canonical ensemble, there is an elegant equation
1 o]
Py(k) = — — Qa—nk(01, 02, ..., 0p—1, 0 =0, W41, ..., wa) . )

Qa n!
Here P, (k) is the probability of obtaining the composke: times.
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The strength of the canonical model as described here lies in the fact that all calculations above avoid
Monte-Carlo sampling. In many other models, a Monte-Carlo sampling over the channels is required.
Since the number of channels is enormous, this requires great ingenuity as well as much more computer
time.

The model of one kind of particles where composites have a volume energy, a surface energy and
excited states is already very useful for investigations of phase transition, caloric curves, etc. and we will
pursue this in latter sections a great deal. Let us, nonetheless, introduce here the model with two kinds of
particles (so that one can compare with actual nuclear cfis®4y,16] Now a composite is labelled by
two indicesw — w; ;. The partition function for a system withprotons andN neutrons is given by

ni.j

0zn=>Y_T] (::—JJ, : (10)

i,j

There are two constraint& =) i x n; j andN =) j x n; ;. These lead to two recursion relations
any one of which can be used. For example

1

Qzn= 7 Z i0;jO7—iN—j » (11)
i,j
where
4 32,: | \3/2
Wi j = ﬁ(ZEmT) (i + ]) X {gi,j - (12)

Hereg; ; is the internal partition function. These could be taken from experimental binding energies,
excited states and some model for the continuum or from the liquid drop model in combination with other
models. The versatility of the method lies in being able to accommodate any choige; féx choice

of g;,; from a combination of the liquid drop model for binding energies and the Fermi-gas model for

excited states that has been used is

1 i = ))?
qi,j = €xp T |:Woa —oa?® -k 13 s P + Tza/so ) (13)

wherea =i + j, Wo=158MeV, ¢ =180MeV, k= 0.72MeV, s = 235MeV andey = 16 MeV.
One can recognise in the parametrisation above, the volume term, the surface tension term, the Coulomb
energy term, the symmetry energy term and contributions from excited states.

The Coulomb interaction is long range. Some effects of the Coulomb interaction between different
composites can be included in an approximation called the Wigner—Seitz approximation. We assume, as
usual, that the break up into different composites occurs at a r&djwshich is greater than the normal
radiusRp. Considering this as a process in which a uniform dilute charge distribution within r&dius
collapses successively into denser blobs of proper rakliyswe write the Coulomb energy §8]

3 Z2e? 3 i%e?
tr tX gx (- Ro/Ro. (14)

€= 5 R

LJ
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It is seen that the expression is correct in two extreme limits: very large freeze-out valyme (o)
or if the freeze-out volume is the normal nuclear volume so that one has just one nucleus with the proper
radius.

For the thermodynamic model that we have been pursuing, the constanéﬂa?rfﬁ/Rc is of no
significance since the freeze-out volume is assumed to be constant. In a mean-field sense then, one woulc
just replace the Coulomb term in Eq. (13) b§2/a/3)(1.0 — (p/pg)*'3).

Before we leave this section, we mention that the mass parametrisation implied by Eq. (13) can be
vastly improved with only slight complications. We will later present results with the improved formula
[16]. A pedagogical issue: although we have derived results here based on Eq. (1) which takes care of
(anti)symmetrisation only approximately it is showr18] that the specific structure of Egs. (5) and (11)
occur more generally when (anti)symmetrisation is included properly. Part of this argument is presented
in Appendix B which also demonstrates that results based on this section are quite accurate.

3. General features of yields of composites

We pursue here the model of one kind of particles. For 200 particles at a constant freeze-outyolume
3.7Vp we have plotted irfFig. 1 (nz) (in the figure we call thig’ (a) = yield of composite of masa) at
three temperatures. At the lowest temperature shown, the curvd_hsisape. The yieldE (a) first begin
to fall, then reach a minimum and then the yields for heavier masses increase finally cutting off at 200.

T T T
101 E_ _E
101 3 =
© g
>
10° | =
F — — T=5.80 MeV \ %
[ —— T=6.35MeV \ Y /
| oo T=7.30 MeV \ / -
E \ /
- ¥
10-5 ! oo vl ! Lol
10° 10t 102

a

Fig. 1. TheY (a) againsta at three different temperatures. The dissociation system has 200 particles and the freeze-out density
is 0.27p.
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In the literature the heavy fragments are called the liquid phase. The light fragments are gas particles.
As the temperature increases, the maximum at the higldecreases in height finally disappearing at

~ 6.35MeV. At higher temperature(a) falls monotonically. The surface tension plays a crucial role

in this evolution. At any temperature the lowest value of the free engrgyT S will be obtained. It

costs in the energy terito break up a system. A nucleusAhucleons has less surface than the total
surface of two nuclei each of /2 nucleons (the volume energy term has no preference between the two
alternatives). Therefore at low-temperature one will see a large chunk-TBeterm favours break up

into small objects. The competition between these two effects leads to the general fealli@sas a
function of temperature. As we will see in the next section, the temperature at which the maximum of the
yield at the high side cd disappears is the phase transition temperature.

Similar features are seen also in other models of multifragmentation as applied to nuclear physics. The
earliest such model was the percolation mddé&l,20] The model has a paramefemwhich gives the
probability of two nearest neighbour sites joining together as in a composite. Beyond a certain value of
p, a percolating cluster is formed which goes from edge to edge of the system. This corresponds to the
large cluster which forms at the lower temperaturéig. 1L The lattice gas modgR1] has similarity
with the percolation model but has a Hamiltonian, includes percolation model as a [@#)satd also
includes the formation of a percolating cluster.

4, Phase transition in the model
4.1. Signatures from thermodynamic variables

We now begin the discussion of a phase transition in the model. The free energy of a system of
particles is given by = —T In Q 4 and InQ 4 is directly calculable from Eq. (5). For a system of 200
and 2000 particles, the free energy per particle is shown in the top paféd.o, as a function of
temperature for fixed freeze-out densit@tpy. An approximate break in the first derivative Bf A is
seen to develop at 6.35MeV for 200 particles and at 7.15 MeV for 2000 particles. We believe the
break would be rigorous if we could go to an infinite system. A break in the first derivative implies a
first-order phase transition and a discontinuous change in the value of entropy per particle. This would
imply that the specific heat at constant volume per partigle- (0(E/A)/d0T )y would go through a
peak (for an infinite system this peak would goctg). We show this in the middle panel &ig. 2 for
systems of 200 and 2000 particles, where we find that the width of the peak decreases and the height of
the peak increases as the particle number increases. As expected, the temperature where the specific he
is maximum also coincides with the temperature at which the maximum in the high siqEigf 1) just
disappears.

Another very interesting quantity is the quantiiax) /A (i.e. the size of the largest cluster) as tem-
perature varies. This can be calculated using Eqg. (8).We d&fiae the temperature where the break in
the derivative of the free energy occurs (this is the first-order phase transition temperature). Calculating
the size of the largest cluster at different temperatures, we findihat) /A approaches 1 a6 < Tj
and approaches a small numberTas Ty,. The change is smooth for low mass nuclei (bottom panel of
Fig. 2) but becomes more sudden for larger systems. For large systems there is a large blob (i.e., liquid)
below T, which disappears as soonhsrossedy. This we think is a very engaging example of boiling
emerging from a theoretical calculation.
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Fig. 2. The free-energy per particle, the specific heat at constant voltyned and the size of the largest cluster as a function
of temperature, systems of 200 and 2000 particles.

To summarise, the thermodynamic model predicts unequivocally a first-order phase transition at in-
termediate energy. In the realm of densiffpy<0.5 for which we believe the model to be reasonable,
there is no critical point. Bugaev et §23] have taken the model beyond this range of density and find
that the critical density ig/pg = 1 and the temperature is 18 MeV when the surface tensidn goes
to zero. We end this section by noting that microcanonical calculations using statistical equilibrium were
also suggestive of a first-order phase transition occurring at intermediate ¢246ly

4.2. Power-law and scaling behaviour of composite yields
Arather large part of literature in heavy ion reaction postulates thatin multifragmentation atintermediate

energy, one is near the critical point of nuclear matter. One then proceeds to determine from the data
the critical temperature and various critical exponents. The working formula, obtained from models of



C.B. Das et al. / Physics Reports 406 (2005) 1-47 11
critical phenomena (to see how the formula arises, refi5@®6)) is
(na) =a " f(a’(T —To)) . (15)

Herer is called the Fisher exponej27], ais the mass number of the compostités a critical exponent
andT¢. the critical temperaturé;s as yet an unspecified function, but instead of being a general function
of aandT, itis a function only of the combinatio#f (T — T¢). This is called scaling. AT = T¢, the yield

(ng) =a~ " f(0) is a pure power law, but away frofy it will deviate from a power law.

Inintermediate energy collisions, even if we proceed under the assumption that one is observing critical
phenomena we cannot expect near perfect fit to Eqg. (15) whose validity depends upon the dissociating
system being very large. Also, the rangead$ to be chosen judiciously. It cannot be very small (since
Eqg. (15) applies to “larged’s [25]). Buta also should be truncated on the high side (significantly smaller
than the size of the dissociating system).

With these provisos, we can at best expect a moderately good fit. Extractimmnd 7, from a given
set of (n,) (either from experiment or models) when only an approximate fit is expected is non-trivial
and not unique. We skip the details here which are givej28-30] A more sophisticated method of
extraction of the relevant parameters can be fourf@1h The same technique is used 82].

The EOS collaboratiof33] obtained data from break up of 1.0 GeV per nucleon gold nuclei on a
carbon target. Depending upon the impact parameter, the excitation energy (or the temperature) of the
projectile like fragment which breaks up into many composites will varj2&?29]it is argued thaT in
Eq. (15) varies linearly with the charged multiplictyand the scaling function of Eq. (15) is changed
from f(a®°(T — Tp)) to f(a®((m — mc)/me)). Herem is the critical multiplicity. Having determined
from the data, ¢ andm (as mentioned before we are skipping details of how the extraction is done but
this can be found ifi28,29) one then verifies if the scaling law works: that is, we check if foras)

(ng)a®™ will fall on the same curve when plotted as a functioru®tm — mc)/mc. How well this works

can be seen, for example, filg. 180of [30]. The deviations from the hypothetical “universal”’ curve are

by no means negligible, but can we assume that the scatter of points is entirely a finite particle number
effect and conclude that we have indeed seen evidence of critical phenomena?

To resolve this, we play a theoretical game. We take the thermodynamic model (which we know has
only a first-order phase transition), pick a system with particle numbereneratgn,) for different
temperature$ and from these data extract best possible valuesoéndT.. Having obtained these we
examine how well the scaling law applies. This is showfig 3. The figure is taken frorf82] where
other similar examples are displayed. For the model, deviations from one “universal” curve are smaller
than what the EOS collaboration data gave. We might conclude we have extracted the model critical
temperature and the critical exponents. These would be wrong conclusions, of course, because the mode
has only a first-order phase transition. In fact, the valu&.aine extracts this way is quite closeTpg,
the first-order phase transition temperature.

In[30]the Copenhagen SMM is used to show that approximate scaling is obtained. The hope would then
be that the theory also demonstrated criticality. The SMM is, in spirit, very close to the thermodynamic
model, thus we doubt that the very approximate collaps&:ofa® to one curve is any indication of
criticality. It is impossible to disentangle what errors arise because the wrong formula is applied and what
errors arise because of the finiteness of the system and many other factors such as the Coulomb force
pre-equilibrium emission etc. Experimental data would have a very hard time of choosing between a first
and a second-order transition.
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Fig. 3. The scaling behaviour in the mass rangec4@ 40 in the thermodynamic model for different systems at different
freeze-out densities.

From 8 GeVcrn™ on Au data, the ISi$34] collaboration obtained the caloric cur\@5]. The specific
heat was obtained by differentiating with respecttdxperiment shows that the peak of the specific
heat coincides well with the position where tjfefor > ((ng) — Ca~")? minimises. Here botlt and+
are taken as parameters to be fixed by minimisation. The canonical model gives similar results. Further
details of experiment and theory can be foundid@] where effects of the Coulomb interaction on the
position of the maximum of the specific heat is discussed in detail.

We turn now briefly to another phenomenological model which was invoked 20 yeaf3#dut was
revived recentlyf38]. This is yet another example where evidence for criticality can be drawn too hastily.
Consider the formation of a droplet containiagarticles in the liquid phase surroundedtbparticles
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in the gas phase. At constant temperature and pressure, the Gibbs free energy is the relevant factor
Then

Guwithdrop = tya + peb + 4nR%c + Ttlna

andGnodrop= Ug (a+Db).

The probability of forming a droplet containiragparticles is proportional to expAG/T), so that the
yield of droplets of siza is

(na) = Ca™* expl(ug — w)a/T + c2a®/T1 . (16)

Here bothy; andy, are functions of. At coexistence and also at critical temperature, they become equal
to each another. Alse, is a function of temperature and &, the coefficienic, goes to zero. Since
aboveTg, there is no distinction between the liquid and the gas phase, one cannot speak of droplets. Thus
the theory only applies t& < T;. As such, the formulation is more limited than that of Eq. (15) which
applies to both sides df;.. We now generate values ¢f,) from the thermodynamic model for different
temperatures and try to fit these “data” using Eq. (16). The following fit was tried. We=s&t. Let

o= (g — )/ T,y=c2/T.Wefit the calculatedn,) to Ca~2 exp(aa + ya?/?) at different temperatures
wherex, y values at each temperature are varied for best fit. The valugs ab functions of temperature
are shown irFig. 4where we also show that the parametrisation fits the valugs p¥ery accurately. The
values ofx andy both go to zero near temperatufe= 6.5 MeV suggesting that the critical temperature

is 6.5 MeV. Of course, this conclusion would again be wrong since the model which gaveihgse

has only a first-order phase transition.

One problem is that whenever a fit, whether through Eg. (15) or through Eq. (16), is done, the fit is
attempted for a narrow range,= 6—40. In this limited range moderate to excellent fits are obtainable
for different looking parametrisations. It is shown[B2] that if the range of could be extended to
beyond 100, different parametrisations would diverge. Unfortunately, the rarggbax to be limited.

For example, higher values afvould have contamination from fission processes which is something we
do not wish to include. If we are stuck to a limited rangesf we will also be limited by ambiguity.

The emphasis towards unravelling critical phenomena from data on intermediate energy heavy ion
collisions is at least partly due to history. The observation by the Purdue {88]hat the yields of the
fragments produced ip + Xe andp + Kr obeyed a power lawn,) « a~" led to a conjecture that the
fragmenting target was near the critical point of liquid—gas phase transition. The origin of this conjecture
is the Fisher moddgR7] which predicts that at the critical point the yields of the droplets will be given by
a power law. Also the first microscopic model that was yd&g20]to compute yields of fragments was
the percolation model which has only a continuous phase transition and a power law at criticality. The
power law is no longer taken as a “proof” of criticality. There are many systems which exhibit a power
law: mass distribution of asteroids in the solar system, debris from the crushing of basalf#@]latsd
the fragmentation of frozen potatojgd]. In fact, the lattice gas model which has been used a great deal
for multifragmentation in nuclei gives a power law at the critical point, at the co-existence curve (this is a
first-order phase transition provided the freeze-out density is less than half the normal density) and also
along a line in thel'—p plane away from the coexistence cuf4@—44]

We conclude this section by stating that the lattice gas model which has a Hamiltonian and can be and
has been used to fit many data (not in any obvious way connected with phase transition) also predicts a
first-order phase transition at intermediate eng4gy43]
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Fig. 4. The parameters of droplet modedndy as a function of temperature for a system of 240 particles at freeze-out volume
4Vp. The right panels show the fit of the model to the yields obtained in the thermodynamic model.

4.3. Comparison with mean-field theory

Here we concentrate on the thermodynamic model, but as applied to nuclei with neutrons and protons.
The operative equations are (10)—(13) but we will switch off the Coulomb tewwhEq. (13) will be set
to zero). The objective is to compare with finite temperature Hartee—Fock results for nuclear matter. For
nuclear matter the Coulomb interaction has to be switched off and one retains only the nuclear part of the
interaction.

Phase transitions are often considered in the mean-field model. Examples for the present discussion are
[10,12,13] Invariably a grand canonical ensemble is used characterised by a neutron chemical potential
un (T, p) and a proton chemical potentjad (7', p). The use of the grand canonical model would imply that
the results are valid for very large systems although in nuclear physics we often use the grand canonical
ensemble for not so large systems as well.
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Muller and Serof45,46]used the mean-field model to investigate phase transition in nuclear matter.
Normally nuclear matter means a very large system wite= Z with the Coulomb force switched
off. For this section we will use the term nuclear matter for very large system bah be different
from Z. The Coulomb is switched off as usual. Define proton fractos Z/(N + Z). Symmetric
nuclear matter hag = 0.5 and would have a first-order phase transition below the critical point. But
for y deviating significantly from 0.5, these authors demonstrate with a more general Maxwell like
construction that the first-order phase transition would turn into second order. Further the phase transition
would take place neither at constant volume nor at constant pressure but would have a more general path tc
traverse.

The general characteristics of mean-field theories is that one is constrained to have one density.
Having the same density everywhere is a big price to pay. For example, this would not permit a
liquid phase at one place and a gas phase at another. The limitation of one density only shows up
as mechanical instability, i.e., in parts of the equation of state diaggam f isothermals)op/op
turns out to be negative. This is unacceptable for infinite matter and then one has to, by hand, cor-
rect this using a Maxwell construction. The thermodynamic model is very different. Here, for example,
p/po = 0.3 does not mean that at the freeze-out volume, matter is uniformly stretched. Rather matter
breaks up into different blobs all with the same denggybut there are empty spaces between blobs.

If there is a large blob, we identify it as liquid, nucleons and light composites in the adjoining spaces
form the gas (iM47], it is shown that this last scenario has a lower free energy compared to uniform
stretching as assumed in Hartree—Fock theory). For large matter, there is no néwd/fpn to be
negative.

A similar thing happens with isospin fractionation. In mean-field theory, there is one vajuevefy-
where. Experimentally, it is verified that if the dissociating system has a gih#én after break up, the
largest blob has > ygisswhereas:,/(n, +n,) < ydiss Wheren,, n, are free protons and free neutrons,
respectively. Hergyiss is they value of the dissociating system. One might say the liquid phase has a
differenty from that of the gas phase. Again mean-field theory would have a hard time accommodating
this. It must have the same valuey&verywhere and the fact that this is an unstable situation shows
up in the following way. If we draw:p(1y) as a function ofy at constant temperature, the derivative
(dup/dy), can turn out to be negative (equivalentdy. /0y), can turn out to be positive). In the ther-
modynamic model, isospin fractionation happens naturally. In general, the model has, as final products,
all allowed compositess, b, c, d, .. ., where the composit@hasy, =i,/(i, + j.) wherei,, j, are the
proton and neutron numbers of the composit&@he only law of conservation i€ = )i, x n, and
N =Y, ja x nq. SO alarge chunk can exist with highethan that of the whole system and populations
of other species can adjust to obey overall conservation laws. Whatever partition lowers the free energy
will happen. Since we are using a canonical model, we do not need the chemical potgntia]s, but
we can compute them anyway from the relatioa (0F /on)y 7. We know the values 0@z v, Oz-1.n
andQz y—1. SinceF = —-TIn Q,one hasip = —-T(n Qz n —In Qz_1 n) and similarly foru,.

Calculations with the canonical model discussed in this article, do not show regions of negative
(Oup/0y) .1 [48,49] These also suggest that the phase transition in the canonical model remains first-
order forasymmetric matter. We showAig. 5results oty calculation for different degrees of asymmetry.

One sees that as the system gets bigger, the maximaynbecomes narrower and higher, ensuring there
will be a break in the first derivative of the free energy in the large matter limit.

Chemical instability for finite systems in Hartee—Fock theory has also been worked out. Contributions
of both Coulomb and surface terms can be included. For detai[$%eB3]
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(y=2/4).
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5. Comparison of canonical and grand canonical

As noted in the introduction, the grand canonical version of the model we are pursuing in this paper
has been known and used for a long time. Now that we know how to treat an exact number of particles
rather than an ensemble of particle numbers, it will be useful in a few cases to examine, given that our
dissociating system has an exact number of particles, how the use of grand canonical ensemble affects
the prediction of observables. For simplicity, we start with the model of one kind of particles and our
dissociating system has 200 particles. Thus we can have monomers, dimers, trimers, etc. up to a composite
of 200 particles. In the grand canonical ensemble, the average number of compositesweions is
given by

(nk) = exp(Buk)wy = exp(fuk)V oy . (17)

Herep is the inverse of temperature angis the same as defined in Eq. (6) and the chemical potential.
We also usé& =w/ V, wheren depends only on the composite and the temperature but not on the volume
of the dissociating system. The chemical potential is determined by solving

k

p=D_ kexpkpua . (18)

k=1

In this examplek,, is the number of particles in the largest cluste200. Having determined we now
find (ny) from (ng) = explkfu) V o.

In Figs. 6and7, we make a comparison ¢f)’s from canonical and grand canonical ensembles. The
value ofV was set at ZVp. Results are shown for temperatures below the phase transition temperature and
above itFig. 6seems very reasonable. The overall features are similar. The differences get highlighted in
Fig. 7. At temperature 7.3 Me\{n;) € and(n; )€ are practically the same upke= 40 but deviate wildly
afterwards. Since most of the time we are not interested in the heavier producis=al is the limit
of intermediate mass fragments one is investigating, the grand canonical ensemble does an adequate jok
We must be aware however, that, for heavy composites the grand canonical ensemble does a very pool
job. The accuracy of the grand canonical ensemble at temperature 5.8 MeV (below the phase transition
temperature) is absolutely awful for almost all composites. This is also the temperature range appropriate
for most intermediate energy reactions. It is thus dangerous to use the grand canonical ensemble in
intermediate energy heavy ion reactions.

If however, one is only interested in finding the ratio of populations of two adjacent composites, the
grand canonical continues to be useful over a larger domain. This is shdvig i

The very different populations of composites below the phase transition temperature leads to drastically
different caloric curves in the grand canonical ensemble and canonical ensemble. As noted in Section 4
and shown irFig. 2, for a fixed density the specific heat per particle maximises at a certain temperature.
Keeping density fixed, if we increase the number of particles the height of the maximum increases and the
width decreases. IRig. 9we show this again for 200 and 2000 particles, but now we have also indicated
the specific heat calculated in the grand canonical ensemble. In both models, the peak of the specific
heat increases when we go from 200 to 2000 patrticles and the widths decrease but the results are muclt
more dramatic in the canonical model. In particular, it is not obvious that the specific heat in the grand
canonical ensemble will attain extraordinary heights and miniscule widths. In fact, it was suggested in the
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literature, engaging the grand canonical ensemble, that there is a discontinuity in the value of the specific
heat at phase transition but no infin[&3].

To understand at a more fundamental level the cause of the difference in values of specific heats in the
two ensembles, we will analyse the case of 2000 particles in some detail. In the grand canonical model,
even though we are using the average value of the particle number to be 2000, there are, in practice,
systems with varying particle numbers (in principle, from @49. The part which has, for example, 1000
particles has density half of the prescribed density. The peak in the specific heat of this half density will
occur at a different temperature than that which maximises the specific heat at density 20005
there is a smearing effect. This is always an inherent problem with using the grand canonical ensemble
but most of the time the fluctuation from the average value is small enough that one can live with it. This
would have meant, in our present example, the part which contains 1000 particles is so negligibly small
that it does not matter. This however is not so in the present model below the phase transition temperature.

In the present case, the grand canonical calculation starts out by obtaifiom Eqg. (18) where
kn = 200Q p was taken to bgg/2.7. The average value dfik) is then given by Eq. (17) where
V = 2000 x 2.7/po. With this we have} ¥=20%k (4,) = 2000. The fluctuations in the model can
be calculated easily. We have the general statistical relation

1 8%In Ogr.can a2 2
B, - WA (19)

Here Qgr.canis the grand canonical partition function. We can write two expressiong §p¢an. One is

k=2000

In Qgr.can= Z exp(fuk) oy (20)

k=1
This immediately leads to

(N?) —(N)>= > K*m) (21)
which is easily calculable. The other expression we can exploit in the present case is

o
Ogr.can= Z exp(Buk) Ok i, (22)
K=1
where Qk i, is the canonical partition function @& nucleons but with the restriction that the largest
cluster cannot have more thayp (=2000 nucleons. We can calculate these explicitly using methods
of Section 2. For practical reason§ has to be cut off at the upper end. Here we uked 10, 000 as
the upper limit. Since the average number of particles is 2000, this appears to be a safe upper limit in
Eg. (22). The quantity: is known from solving Eq. (18).

The fluctuations calculated with Egs. (21) and (22) are showrign 10 One sees that there is a
temperature above which the fluctuations are small. At these temperatures, the grand canonical value of
specific heat is indistinguishable from the canonical value. But as the temperature is lowered, fluctuations
grow rapidly and the results begin to diverge.

Itis interesting to study fluctuations further. The probabilit)kgdarticles being in the grand canonical
ensemble isx eKPrtin Cx \We plot inFig. 11expfu(K — A) +In Qk — In Q4]. This takes the value 1
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at K = A and in the normal picture of the grand canonical ensemble would drop off rapidly on either side
of A. This does happen at temperatures higher than the boiling temperature. The Tase/atMeV
corresponds to a standard scenario. But the situation at temperature 7.3 MeV is drastically different. The
probability does not maximise & = A but at a lower value. It is also very spread out with a periodic
structure. The periodicity is 2000 and is linked with the fact that in the case studied, the largest composite
has 2000 nucleons and at low temperatures, this composite will play a significant role.

More discussions on this case can be foungbj.

6. Specific heat at constant pressure

We have used'y, the specific heat at constant volume a great deal in the previous sections. In canonical
modelsCy is always positive. ertlngE g Ei(V)exp(—BE;(V))/>_exp((—pE;(V)) andCy =
(0(E)/oT)y, we getCy = (1/T?)((E — which is the expectation value of a positive definite
operator. However, specific heat at constant pressure allows no such generalisations. Here we enter intc
a discussion of the specific heat at constant pressure in the thermodynamic model. We should add that
dissociation after two heavy ions collide is largely an uncontrollable situation and we do not know what
is a better description: disassembly at constant volume, disassembly at constant pressure or a hybrid
situation.
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Lately, interest in the topic has increased with the realisation that for finite systgnean sometimes
be negative and such cases might arise in heavy ion colli§t@hr$56] To study this possibility in our
model, we find it convenient to look at the-p diagram at constant temperatures (isothermals). This is
shown inFig. 12 We see there are regions of mechanical instability wii@pe¢op)r < 0. We will show
that the occurrence of negatigg, happens in this region.

The mostfamous case of mechanical instability is the Van der Waals equation of state. In nuclear physics,
if one uses Hartree—Fock theory, then also large regions of mechanical instability appear. Examples of
this can be seen in many published worli€,9,48] All these published works are for infinite systems
(unlike the p—p diagram forFig. 12which is drawn for 200 particles). Quantitative examination of the
equation of state diagrams reveal that the regions of mechanical instability are far bigger in the case of
Hartree—Fock as opposed to what we se€im 12 In fact, plotted on the same scale, the region of
mechanical instability would be tiny (reffig. 1 of [48]) and one would have to plot it in an expanded
scale (such as is donelfg. 12 to study it quantitatively.

In the Van der Waals case or in the Hartree—Fock case for infinite nuclear matter one uses a Maxwell
construction to replace the region of mechanical instalifity In the thermodynamic limit, regions of
mechanical instability should disappear. In our case there is no prescription for Maxwell construction.
Also since our system is very finite, we take the mechanical instabilifyign 12 as real and follow
the consequences for the specific heat. In the figure we have drawn isotherms at three temperatures
T1 < T» < T3. Here Ty is only slightly higher thari;. Instead ofp let us use the variabl& o« 1/p.

The pressure is given by = T(m/V) wherem is the multiplicity. [We actually usen — 1 but this
is inconsequential for the discussion to follow.] For the simple case of monomerspaslgiven by
p=T(A/V)whereAis the number of particles. This number does not changepthasps falling with
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V. In our casemis significantly less thaA. It is not a constant a¢ and/orT change. As can be readily
guessednincreases witll at constan¥; malso increases wittf at constanT. Negative compressibility
is marked by(om /oV)r >m/ V.

Let us consider the pointsandd in Fig. 12 Let ¢c have multiplicitym, volumeV and temperatur€;
for d the corresponding quantities anet+ om, V 4+ 6V andT + 6T . HeredV is negativegT is positive.
Using

m m —+ om
=T —=(T + 6T , 23
p=Ty=0+Dy— (23)
we arrive at
) oV 6T
om _oV._oT (24)
m \% T

In the region ¢, d), 6V is negativeyT is positive thusim is negative. Iim goes down then so does the
potential energy (creating monecreates more surface and hence increases energy). The change in kinetic
energy is:3[(m + om)(T + 6T) — mT] which using Eq. (24) isv 3(3V/V)mT . This is negative also.

Thus both kinetic and potential energies fall giving rise to a negatjyef on the other hand we consider
pointsa andb, pointa has both a bigger volume and a bigger temperature dhuss positive. This

would make both the kinetic and potential energies rise when one movebtmanThis is illustrated in

Table 1 The caloric curve oFig. 13shows regions of negative, .



24 C.B. Das et al. / Physics Reports 406 (2005) 1—-47

Table 1

Variation of energies per particle (MeV) with temperature (MeV) in the negative and positive compressibility zones, for
p =0.017 MeV fm—3

T p/po ex/A epot/ A etot/ A
op 0 6.0 0.146 0.978 —-5.235 —4.257
5 = 6.1 0.212 0.638 —6.970 —6.332
6.2 0.392 0.294 —8.708 —-8.414
op 0 6.0 0.104 1.422 —3.271 —1.849
5 - 6.1 0.090 1.653 —2.513 —0.859
6.2 0.082 1.824 —2.027 —0.202
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Fig. 13. Caloric curve at a constant pressyre=0.017 MeV/fm3) in the canonical model with =200 andN = 200. The solid
and dashed portions of the curve givee and+ve ¢, respectively.

Let us consider the thermodynamic limit. This will be reached when the number of composites near
the boundaries of the freeze-out volume is negligible to the number of composites well inside. In this
limit, intensive variables remain unchanged when extensive variables are changed by a constant factor.
Thus if A is the total number of nucleons in the system and we change, at constant tempédrateire,
A+0aA,V — V 4+ aV the pressurep = (m/ V)T must remain constant. This means, for consfant
whenA — A+ oA,V — V +«V, mmust change te: — m + am. Now for compressibilityA stays
atA, butVto V + «V thusm must change to less tham+ om. Then the pressure will fall wheviis
increased, i.e., regions of negative compressibility disappeatr.

It would be nice to demonstrate this feature directly by doing canonical calculations for larger and
larger systems. The area over which negative compressibility appears does drop as larger and larger
systems are used but the convergence is slow. Instead we will use the grand canonical ensemble to get tc
the A = oo limit. For a given density we solve Eq. (18), setting okge= 200 and 2000, the other time.

This means, in the first case, the largest composite has 200 nucleons and in the second case, the large:
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composite has 2000 nucleons. The temperature is chosen to be 6 MeV. Eq. (18) has no reference to eithe
AorV (only their ratio), the implication being for the grand canonical model to be good each fastor is
or very large. Pressure in the grand canonical ensemble is giver=¢7T/ V) In QgrangWhich leads to
p =3 explkup)iv.

Fig. 14compares the canonical calculation with= 200 andk,, = N =200 withA =occ andN = 200.
We see in the low density (the gas phase) the two diagrams coincide. The rise of pressure with density
is quite rapid and linear. After the two diagrams separate, the rise of pressure with density in the grand
canonical ensemble slows down considerably but there is no region of mechanical instability although
the canonical calculation with 200 particles has a region of instability. In the grand canonical result which
represents the thermodynamic extrapolation, we have not reached the classic liquid—gas coexistence limit
where there would not be any rise of pressure at all (such as in Maxwell’s construction). We think the
reason is this. The largest cluster is 200 which is not a big enough number. We now increase the largest
cluster size to 2000. Now the coexistence region is very clear and there is an unmistakable signature of
first-order phase transition. In the same figure we also show results of canonical calculatiap22iB00
andN =2000. The region of mechanical instability has gone down considerably but it has not disappeared
showing that we have not reached the thermodynamic limit yet.

Thermodynamics allows', to become negative. The following well-known relation ex[2fs

12
C,—Cy=VT—,
K
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wherex is the volume coefficient expansion axds the isothermal compressibility given by
1 (GV)
o=—=\==1] -
v \or »

1/0V
k=———] .
v\op/,

For negative, C), is less tharCy and can become negative.
Using the equalityoV /oT), = —(@V /op)r (@p/0T)y we can also write

B op ov
cr-cv-r(2) () 2

This shows thaC ), can drop belowCy if the isobaric volume coefficient of expansion becomes negative
which is the case in some regionskig. 12

We leave now general considerations of phase transitions, specific heat, caloric curves, etc. and ex-
plore the predictive powers of the canonical thermodynamic model in producing detailed data in heavy
ion reactions. Specifically, we will investigate how effective the canonical thermodynamic model is in
predicting isotopic yields in some specific reactions. For this we need to go beyond the production of
hot fragments that the canonical thermodynamics will give. To obtain yields of specific final products,
we need to investigate how fragments at non-zero temperatures will decay. The next sections address
this issue.

7. Corrections for secondary decay

The statistical multifragmentation model described above calculates the properties of the collision
averaged system that can be approximated by an equilibrium ensemble. Ideally, one would like to measure
the properties of excited primary fragments after emission in order to extract information about the
collisions and compare directly with the equilibrium predictions of the model described in this report.
However, the time scale of a nuclear reacti@d2%s) is much shorter than the time scale for particle
detection(1092s). Before reaching the detectors, most particles decay to stable isotopes in their ground
states. Thus before any model simulations can be compared to experimental data, it is indispensable to
have a model that simulates sequential decays. This turns out to be not a simple task.

In this section, we follow the techniques of Rgts7,58]to calculate the secondary decay. We identify
some issues that can be accurately addressed and others that are less controlled and may contribut
uncertainties that influence the final results. Later, we calculate the secondary decay of excited nuclei
predicted by the statistical multi-fragmentation model and compare the final ground state yields to recent
measurements.

7.1. Levels and level densities
To calculate the secondary decay corrections, one must specify both the high lying states that are

mainly populated at freeze-out and the lower lying states whose populations increase as these excited
nuclei decay towards the ground state nuclei that are experimentally measured. In the previous sections,
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the discussion was centered about the states that are populated at freeze-out. While in principle all nuclear
states may be involved at freeze-out, the vast majority of fragments are excited to the particle unbound
continuum.

The level densities in the unbound continuum influence the overall yield of unbound nuclei at freeze-out
as well as the sequence and the number of particle decays. In principle, interactions between fragments
and their surroundings modify the states and their excitation energies. The vanishing of the surface tension
a(T) in the free energy expression at the critical temperdafuee 18 MeV reflects such considerations.

Few experimental constraints on continuum level densities exist, however, even when the nuclei are
isolated. Thus, uncertainties in the continuum level densities introduce uncertainties into the calculated
results.

Following Ref.[57], we represent the continuum level densities corresponding to the internal free
energies in Eqgs. (7) and (13) by the expression

psmm(E™, J) = psum(E™) f(J, o) , (26)

where pSMM(E*) — pFG(E*)e—bSMM(aSMME*)?:/Z’ bsym = 0,O7A_1'82(1+A/4500, asmm = A/ey +
300A%/3/ T2, Jis the spin,E* is the excitation energy andl is the mass of the fragment. For light
and medium mass nucleigym ~ A/8. Here,

1/4
o _ _ 9smm "
pEG(E™) = Nk exp<2 aSMME> : (27)
2J +1 —(J + 1/2)2/242
f(J,a):( + )exr{2iz+ /)/a]’ (28)

o? ~ 0.0888/A - E*/8)A%/3 (29)

andE* andZ are the excitation energy and charge of the fragment. For further details, we refer the reader
to Ref.[57].

In contrast to the continuum level densities, the discrete level densities need no corrections for the
influence of interactions because these levels become important only much later in the decay after the
fragments have decoupled from their surroundings. For this purpose, we use the spectroscopic information
of isolated nuclei witt¥Z < 12 where the information is available. FordZ <15, low-lying states are not
well identified experimentally and a continuum approximation to the discrete level dgg8ityas used.

For all fragments withZ <15 and excitation energies between the domains of discrete and continuum
level densities, the level densities were smoothly interpolggép

Where the experimental information for nuclei with< 15 is incomplete, values for the spin, isospin,
and parity were chosen randomly in the decay calculations as follows: spins ogegleere assumed
with equal probability for even-A (odd-A) nuclei, parities were assumed to be odd or even with equal
probability, and isospins were assumed to be the same as the isospin of the ground state. This simple
assumption turns out to be sufficient since most of spectroscopic information is known for these low-lying
states.

For excitation energies where little or no structure information exists, levels were assumed to be
specified by the relevant level density expression. Groups of levels were binned together in discrete
excitation energy intervals of 1 MeV fat* < 15MeV, 2MeV for 15< E* <30 MeV, and 3 MeV for
E* > 30 MeV to reduce computer memory requirements. The results of the calculations do not appear to
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be sensitive to these binning widths. A cutoff energ¥gf, /A =5 MeV was introduced corresponding

to a mean lifetime of the continuum states at the cutoff energy about 125¥Where unknown, parities

of these states were chosen to be positive and negative with equal probability and isospins were taken to
be equal to the isospin of the ground state of the same nucleus. In this fashion, a table of states for nuclei
with Z <15 was constructed.

7.2. Sequential decay algorithm

Before sequential decay starts, hot fragments With1l5 were populated over the sampled levels in
the prepared table according to the temperature. Fattithevel of a given nucleugd, Z) with its energy
E} and spin/;, the initial population is

2J; + 1) exp(—EF/ T)p(EF, J;)
YL+ Dexp(—Ef/T)p(EF, ;) '

Y; = Yo(A, Z) (30)

whereYg is the primary yield summed over all states of nucletis®) andT is the temperature associated
with the intrinsic excitation of the fragmenting system at breakup.

Finally, all fragments will decay sequentially through various excited states of lighter nuclei down to
the ground states of the daughter decay products. The decay of fragmeni witb was calculated
according to the fission model of R§0]. The subsequent decay of excited fission fragments x5
was calculated according to the Hauser—Feshbach algorithm described here. In this algorithm, eight decay
branches oh, 2n, p, 2p, d, t, 3He and alpha were considered for the particle unstable decays of nuclei
with Z <15. The decays of particle stable excited states via gamma rays were also taken into account for
the sequential decay process and for the calculation of the final ground state yields. If known, tabulated
branching ratios were used to describe the decay of particle unstable states. Where such information was
not available, the branching ratios were calculated from the Hauser—Feshbach fi@hhula

FC GC

oY, Ge oy

where

de+\]e| |‘]P+‘l| 1+ T T (_1)1
2 e
Ga=(laledasleallp1p3)* Y = Ti(E) (32)

T=1da—Je| I=|1p—J|

for a given decay channdl(or a given state of the daughter fragmeunt), J,, andJ, are the spins of
the parent, daughter and emitted nucleand| are the spin and orbital angular momentum of the decay
channel;T;(E) is the transmission coefficient for tlidn partial wave. The factdrl + npndne(—l)l]/z
enforces parity conservation and depends on the paritiest1 of the parent, daughter and emitted
nuclei. The Clebsch—Gordon coefficient involvinhg /,, and/,, the isospins of the parent, daughter and
emitted nuclei, likewise allows one to take isospin conservation into account.

For decays from empirical discrete states &a@0, the transmission coefficients were interpolated
from a set of calculated optical model transmission coefficients; otherwise a parameterization described
in Ref.[59] was applied.
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8. Comparisons to data

Even though the structure of the low-lying states of the fragments plays little role in properties of the
hot system, these structure effects become critical when the fragments cool later by secondary decay.
In the sequential decay algorithm described in the last section, in addition to more sophisticated level
densities, empirical binding energies of the known nuclei are incorporated. Where the empirical masses are
lacking, an improved mass formUt6,57]is employed. To be self-consistent, the same masses and level
densities are used both in the thermodynamic model which produces the excited primary fragments and in
the subsequent sequential decay. This self-consistency requirement appears to be rji@6gksasygme
observables. The resulting code which combines the thermodynamic model with the sequential decay
algorithm is referred to as ISMM for improved Statistical Multifragmentation Model in the following
sections of the report.

To illustrate the capabilities of the thermodynamic model, we calculate the final ground state elemental
and isotopic yields for systems witky = 168 andZp = 75 andAg = 186 andZg = 75 atT = 4.7 MeV,
corresponding t&*/A ~ 5MeV. In all the following calculations, the freeze-out density is taken to be
1/6 of the saturation density. These two systems were chosen because they have the same proton fraction
as the combined systems formed in centfdBn + 112Sn and?4sn + 124sn collisions, respectively.
However, the overall size and excitation energy of these systems have been reduced below that of the
corresponding compound nuclei to reflect the loss of particles and excitation energy to pre-equilibrium
emission prior to the multi-fragment breakup. These parameters have not been adjusted to obtain a best
fit of the data.

In the following, we illustrate the capability of this thermodynamic model to describe experimental
charge, mass and isotopic yield distributions. We also compare experimental and calculated observables,
such as the isotopic temperature and the isoscaling parameters, which are constructed from these yields

8.1. Charge and mass distributions

Calculations of the mass distribution for excited primary fragments are sholig.id5for a system
with Ag=168 andZg =75 atT =4.7 MeV. The distributions of the primary fragments directly obtained
from the thermodynamic model are shown as dashed lines with open points while the solid line with
solid points represent the distributions of the final fragments after sequential decays. Certain differences
between primary and final spectra can be expected. Heavier fragments formed in the multifragment stages
decay to smaller fragments, shifting the distribution to lower masses. In addition, the decay produces a
large increase in the hydrogen and helium particles, because these are the main products of the decay o
the heavy fragments.

The differential multiplicities @4 /dQ for various masses with < 20 are plotted in an expanded scale in
Fig. 16for both thedg=168 and 186 systems. For comparisons, experimental data obtained by averaging
over 70 <0cm< 110 for central’’Sn + 112Sn and'?4Sn + 124sn collisions atE/A = 50 MeV [62]
are plotted as open and solid points in the left and right panels, respectively. The calculations reproduce
many features of the mass distribution.

The relative normalization of the calculation can be increased by increasing the size of the source
or by making its angular distribution sideways peaked. The slope of the mass distribution can be made
more steep by increasing the source temperature. There are indications that the experimental angulai
distributions are not isotropic and that pre-equilibrium emission mechanisms may contribute to the yields
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Fig. 15. Predicted mass distributions from the multifragmentation of a source nucleus with mass number 168 and charge number
75. The open circles are primary fragments yields and the closed circles are yields after secondary decay.
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Fig. 16. Predicted mass distributions € 20) from the multifragmentation of asource nuclei with = 168 andZg = 75 (left
panel) anddg =186 andZg = 75. The dashed lines are the predicted primary yields and the solid lines are predicted yields after
secondary decay. For comparison, data from the multifragmentation of central collisibtSof+ 112Sn are shown as open

symbols (left panel) and closed circles f8f'Sn + 124sn reaction (right pane[p2].
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Fig. 17. Predicted charge distributions from the multifragmentation of asource nucleudgnti68 andZg = 75. The open
circles are primary fragments yields and the closed circles are yields after secondary decay.

of the lighter fragments. Accordingly, we do not fit the calculations to the experimental data in this
article, but defer such detailed analyses until more experimental data that can constrain such effects
become available.

The charge distributions exhibit similar behaviour as the mass distributions. For completeness, we
include the charge distributions for thg) = 168 andZo = 75 andAg = 186 andZo = 75 in Figs. 17
and18. The same conventions for the mass distribution figuFégs( 15and16) are used. In the break
up calculations, the odd—even effects are evident. These occur because pairing and shell effects are no
completely washed out in our level density expressions at atemperaflired? MeV. As the secondary
decay washes out such structures, these odd—even effects in the primary distribution have little or no effect
on the final fragment distribution.

8.2. Isotopic distributions

In Fig. 19 the isotopic distributions for carbon and oxygen isotopes are plotted for the two sources.
Using the same convention as before, the dashed lines correspond to the distributions of the primary
fragments while the solid lines represent the final distributions after sequential decay. As expected, the
more neutron-rich system witNp/Zp = 1.48 preferentially produces more neutron-rich isotopes than
the neutron deficient system witfy/Zo = 1.24. In all cases, the primary distributions are much wider
and more neutron-rich than the final distributions. The experimental isotope distributions (data points)
agree more with the final results obtained after secondary decay than with the primary distributions.
Nonetheless, the widths of the experimental distributions exceed those of the final distributions and are
more neutron-rich. This suggests that the predicted corrections for secondary decay may be somewhat
too large.

The mean neutron to proton ratiQ¥/ Z) for each element provides another observable with sensitivity
to the isospin asymmetry dynamics of the reaction. The dependence of the calculated primary values on
the (N/Z) of the total system is much stronger than that of the final values. This can be deign20
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Fig. 18. Predicted charge distributiong € 8) from the multifragmentation of asource nuclei witlp = 168 andZg = 75
(left panel) andAg = 186 andZg = 75. The open and solid points are data from R&2]. SeeFig. 16 for explanation of
symbols used.

where the primary (left panel) and final (right pan@i)/ Z) values are compared for the two systems. The
differences of the primary values faN / Z) of the two systems are large, reflecting the large difference in
the initial isospin asymmetry of the two systems. The largest valugsvipZ) occur forZ =~ 8, 20, etc.,
values corresponding to nuclei where one can have either closed proton or neutron shells. Such nuclei
can remain comparatively well bound even for large valu&/¢¥. Both of these enhancement and the
difference between th@gVv/Z) values for the two systems are diminished in the final distributions, which
are both narrower and located closer to the valley of beta stability.

Fig. 21shows measured and calculated primary and final valug#foZ) as functions of the element
numbelZ. The left- and right-hand panels provide {d&/ Z) values for the neutron-deficient and neutron-
rich systems, respectively. The calculated final distributions reproduce the measured values well. It is
rather curious that the experimental/ Z) values exhibit the odd and even effects as a funcfioSuch
staggering is much less obvious in the neutron-rich system. For referen¢#, tAe for the abundances
of naturally occurred isotopes are plotted as stars in both panels of the figure.

8.3. Isoscaling

The dependence of the isotopic distributions onih¢Zo of the colliding system can be more sen-
sitively explored by the use of isotopic ratifg2—65] In particular, the ratioR21(N, Z) = Y2(N, Z)/
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Fig. 19. Isotope distributions for carbon and oxygen fragments. The dashed and solid lines correspond to the predicted primary
and final yields respectively. The open and solid points are data fronjG2&f.

Y1(N, Z), of yields from two different reactions, labelled here as 1 and 2, has been shown to exhibit an
exponential relationship as a function of the isotope neutron nubtemd proton numbeg, [62—74]}

R21(N, Z) = C exp(aN + pZ) , (33)

whereC is a normalization factor andandp are the isoscaling parameters.

Calculations with a variety of different statistical models show that the isoscaling relationship is strictly
obeyed by the primary fragments in these mod@4s66,71] Surprisingly the isoscaling relationship is
also obeyed by fragments produced in dynamical models such as the asymmetrized molecular dynamical
model[70]. In all cases, the isoscaling parameters are related to the isospin asymmetry of the collisions
and to the form of symmetry energy or, equivalently, asymmetry term of the EOS chosen in the model
[64,66,70,71,75]

Neglecting for simplicity the Coulomb interactions between fragments and environment, the exponen-
tial dependence of the isoscaling relationship can be easily understood from the expression for the yields
for a fragment with neutron and proton numbBrandZ within the grand canonical limit of the present

equilibrium mode[76]:

A%2qy 7(T)
3

Ti

Yi(N.Z)=Y, expl(Z pp; + N, ;i + Bn,2)/T] . (34)
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Fig. 20. The mean neutron to proton ratios as a function of the charge of the emitted fragfoetite two systems. The left
and right panels correspond to the calculated results from the primary and final fragments.

Here,gn.z(T;) represents the internal partition function of the fragme&nthe free volume of the system,

A1 =/ 2n#?/mT;, mthe nucleon mass and ; (1, ;) the chemical potential associated with free protons
(neutrons) for théth reaction which produces a system at temperdfurf the temperature in the two
reactions are expected to be the same (as in the Sn reactions described here), the chemical ppfentials
andy, ; contain the only reaction dependent factors in this exponential. In this fisifu, o — u, 11/ T

andﬁ = [:up,Z - :up,l]/T'

The symbols irFig. 22represent the isotopic ratios calculated by the canonical thermodynamic model
described inthis review. lRigs. 22and23, the following convention is adopted. We choose closed symbols
and solid lines for eved and open symbols and dashed lines for ddthrting withZ = 1 for the leftmost
line. The lines are best fits of the calculatRgh ratios to Eq. (33); the lines are essentially linear and
parallel on this semi-log plot consistent with a single constant isoscaling paratpgigsr = 0.50. The
spacing between these lines corresponds to the incre®se far unit increases i; the observed equal
spacing is consistent with a single constant isoscaling paraigigsy = —0.64.

For comparison to the data, we only examine the isotope ratios where there are data with sufficient
statistics. The symbols in the bottom pandraf. 23represent the predicted isotopic ratios after sequential
decays. The lines are nearly parallel to the line§ig 22 on average and the isoscaling parameters
afinal = 0.46 andpfs,q = —0.52 are comparable to the primary values. In detail especially when the
isotopes away from the valley of stable nuclei are considered, the trends are not as clearly consistent with
the isoscaling law as are the trends of the primary distribution. The larger changefivahees may
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Fig. 21. The mean neutron to proton ratios as a function of the charge of the emitted fragfioerihe neutron deficient

(left panel) and neutron-rich (right panel) systems. For comparison, data from the multifragmentation of central collisions of

11251 + 11251 are shown as open symbols (left panel) and as closed circi&*&m + 124Sn reaction (right pane[p2]. For
reference, the meaM/Z ratios from naturally occurred isotopes are shown as stars.

Fig. 22. Predicted yield ratioR21(N, Z) = Y2(N, Z)/Y1(N, Z) from primary fragments for the two systems studied in this
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lines with three points being = 1.
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Fig. 23. Top panel: Experimental isoscaling behaviour exhibited by the céhtsih + 112sn and!24sn + 1243n collisions.

The data are the nuclide yield ratia®p1(N, Z) from the two reactions plotted as a functionMfThe isotopes of different
elements lie along different lines. The solid and dashed lines represent the best fit to Eq. (33). Bottom panel: Predicted yield
ratios,R21(N, Z) obtained from the final yields for the two systems studied in this work. The symbols and lines have the same
convention as the data used in the top panelfigd22

arise from the approximation of the Coulomb interaction used in the model. In the top panel, the data are

shown as symbols. The experimental isoscaling parametetg.gse 0.36 andfy,:,= —0.42. The slopes

from the calculations are flatter suggesting that the temperature of 4.7 MeV used as the input parameter
in the model may be too low. However, if the temperature is increased so that the isoscaling predictions

agree with the data, the other observables such as the mass and charge distributions as well as the isotor
distributions may no longer agree. As stressed earlier, the current work is not to use the optimized set of

model parameters but rather to compare the trends of data with the model calculations. More constraints
and study are needed to optimize the agreement with data.

8.4. Isotopic temperatures

Starting from the grand canonical expression for the yields (Eq. (34)), it is also possible to construct
a double ratio that minimizes the sensitivity to the isospin asymmetry while maximizing the sensitivity
to the temperature. By doing so, one can construct an isotopic thermometer, whereby the temperature is
extracted from a set of four isotopes produced in multifragment breakups as fpnéjvs

AB
Tiso= In@R) "’ )
where
_ Y(A1, Z1)/Y(A1+4 1, Zy) (36)

 Y(A2,Z2)/Y(A2+1.Zp)
AB = B(A1, Z1) — B(A1 + 1, Z1) — B(A2, Z2) + B(A2 + 1, Zp) (37)
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and

_ @Jz8, + D(@2Jz,4141+ 1) |:A2(A1 + 1)]3/2 .

a=
(2Jz1,4, + D(2Jz, 8541+ 1D [ A2(A2+ 1)

In this ratio derived from Eq. (36) for the ground state yieldéA, Z) is the yield of a given fragment

with massA and charge; B(A, Z) is the binding energy of this fragment; and 4 is the ground state

spin of the nucleus. In the context of the grand canonical ensemble, Eq. (35) has been regarded as ar
effective or “apparent” temperature that may differ somewhat from the true freeze-out temp€idere

to the influence of secondary decay and other cooling mechanisms.

The influence of secondary decay on the isotopic temperatures can be clearly observed because it lead
to variations in the values for the temperature that depend on the isotopes used to construct the ratio. The
variations are universal, observed in many different reaction systems and thus can be used to assess th
effectiveness of sequential decay models. One origin of these variations is the feeding from higher lying
particle bound states. Such effects can be modeled by changing the value for the statistical factor “a” and
making it temperature dependent. This and additional feeding from the decay of heavier particle unbound
nuclei can be modeled by the secondary decay formalism described in the previous section.

To illustrate the influence of secondary decay on isotope temperature measurements, measured anc
calculated final temperatures have been extracted from double rattbs=&#—8 fragments and plotted
in Fig. 24 To reduce the influence of secondary decay, we include only isotope thermometers with large
values forAB in this figure. This requirement restricts comparisons to three types of thermometers: (a)
Tiso(>*He) with Z, = 2, Ao = 3, (b) Tiso(*+12C) with Zo = 6, A» = 11, and (¢)Tiso(*>160) with
Z>=8, A =15. We note that the thermometer (a) involves the light particle paHe while thermo-
meters (b) and (c) concern only intermediate mass fragments Zvith3—-8. The solid lines show
corresponding ISMM predictions for these three types of thermometers as a functign of

Similarities in the variations of the calculated and measured temperatures allow insight into their
origin. Each panel oFig. 24 corresponds to fixed values @b and A;; the observed variations ifiso
are therefore correlated witty andA1. The highest values fdfsg involve 10Be (Z1=4, A1=10)and
180 (z, =8, A1 = 18). The calculations attribute this increase to enhancements in the yields of these
nuclei due tg-ray feeding from their many low-lying particle bound stqt&&-80] Other thermometers
in Fig. 24provide temperature values that are significantly lower than those invdfBegand'80. Most
thermometers are significantly lower than the primary temperature of 4.7 MeV, depicted by the horizontal
dashed line in the three panels.

Both calculated and measured values display ar A dependence ifTiso. Calculated values for
Tiso(1>180 are about 0.5 MeV lower than those fhgo(1-12C), which are about 0.2 MeV lower than
Tiso(>*He). There is also a trend for isotopic temperature values to decrease as a functiprilofe
calculated decrease @fso with A7 and A» reflect the increasing importance of multi-step secondary
decay contributions to the yields of these heavier nuclei. Such multi-step decays make the system appeat
cooler because the final ground state nuclei originate from the decay of an ensemble of unstable nuclei
that are less excited than the original ensemble.

We note that the experimentdlso(>*He) temperatures (solid symbols in the left panel) are sys-
tematically higher than the corresponding ISMM values (solid line). As these thermometers derive their
sensitivity to the temperature from the large binding energy difference befieeand*He, the difficulty
in reproducing these quantities may arise if there are significant pre-equilibrium production mechanisms
for light particles such agHe [80]. To illustrate this effect, we assumed that 2/3 of the measthied
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Fig. 24. Isotopic temperatures extracted from three types of thermometers. Experimental data are shown as the symbols. The
lines are calculations. For reference, the input primary temperature of 4.7 MeV is shown as the horizontal dashed lines. (See text
for details on the dotdashed line in the left panel.)

yield is of a non-thermal origin. This increases #ite yield by a factor of three; calculations including

this pre-equilibrium enhancement are shown as the dot dashed line in the left panel. The success of this
resolution of the discrepancies betwdgn(3*He) andTiso(*-12C) suggests that it may be necessary to
make careful estimations of the contributions from pre-equilibrium emission before isotope temperature
measurements involvinfiso(>*He) will be fully accurate.

9. Summary

The canonical version of the thermodynamic model has helped clarify many aspects of intermediate
energy heavy ion collisions. The obvious advantage is that, as opposed to the grand canonical model, it
has an exact number of particles. The predictions of the grand canonical model (which really applies to
very large systems) can differ significantly from those of the canonical model specially in the intermediate
energy regime. The canonical model helps us to understand the order of phase transition, the caloric curve
and the possibility of negative specific heat. The model gives quantitative fits to experimental data on
isotopic yields and the phenomenon of isoscaling, now well established in intermediate energy heavy ion
collisions. The virtue of the model is also its simplicity. Most of the calculations reported in this work
can be carried out quite easily.
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Appendix A. Equilibrium, reactions and reaction rate time scales

A basic assumption of statistical models is that equilibrium is reached in the time scale of the reaction.
For fragment or composite particle distributions a complex set of reactions takes [d&@2 The
processes involved in the collision of heavy ions can be modeled in a manner that is similar to nucle-
osynthesis in a dense, heated and evolving system such as in the expansion of the early universe anc
in supernovae explosions. The starting point of such a description is then a dense and heated system o
neutrons and protons which combine through a set of reactions to make the composite nuclei from the
lightest nuclei such as deuterons, alpha particles, etc. all the way up to much heavier and complex nuclei.
By way of illustration and also for contrast, the nucleosynthesis in the early universe occurs through a
set of two body reactions with the first element of the chain being an electromagnetic radiative capture
of a neutron plus proton to a deuteron with an emitted photon carrying away the excess energy. After
this first electromagnetic process, light elements are produced by a sequential set of two body reactions
suchas{ +d — He8 +n, d +d — t+p, t+d— He*+n, ... . Nuclei up to Li are believed
to be produced at their equilibrium concentration in big bang nucleosynthesis models. The abundance
of heavy elements comes from processes involved in supernovae. The study of these processes is the
area of nuclear astrophysics and heavy ion collisions offer the opportunity to study similar processes and
phenomena in the laboratory.

In heavy ion collisions, electromagnetic processes are too slow over the time scale of the collision
to produce the observed distribution of composites or produced patrticles. A typical time scale of the
collision is 10°%?s or 30fnyc which is much shorter than any electromagnetic process time scale.
Densities in heavy ion collisions can be high enough for a three body process to occur suglpas
N — d + N, where the nucleoilN can carry away the excess energy. At very high energies, meson
production processes occur, so thdtia formed in radiative pion emission ef+ p. Heavier composite
particles evolve through reactions such as those listed above. However, it should be noted that because o
possible very high initial densities, multi body processes can occur besides two body processes even for
composites heavier than the deuteron. These only enhance the approach to equilibrium. At RHIC energies,
particle production becomes very important, and reactions leading to new particles have been studied
[82,83]

As an example of a reaction rate approach consider the formation of a deuteron through the process
p+n+ N — d+ N. The time evolution of the deuteron density can be obtained from an equation
involving the proton density,,, neutron density,, and nucleon densityy:

d
2 _ PpPn (pd> —pa | PN(oIN+d > n+p+Nlxv)| . (A.1)
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Here (py/pnpp)eq IS the equilibrium ratio of the densities dfs to n's and p's and is a function of
temperature. Thé) termin (A.1) involves the product of the breakup cross section of deuterons induced
by nucleons ana, which is the relative velocity of thBl andd pair. This product is averaged over the
velocity distribution of the pair. In obtaining the expression in (A.1) we used detailed balance which
relates the forward rate for the formation procgssn + N — d + N to the backward rate of the break
up or absorption procegs+ N — p +n + N. Equilibrium is reached when the forward rate is equal to
the absorption rate. Initially, the deuteron density is being built up by forward processes which involves
the product of proton, neutron and nucleon densities, but later in this time evolution deuterons will start to
be absorbed by backward processes which involve the newly formed deuterons and the existing nucleons.
Once equilibrium is reached these underlying processes vanish in the description of the deuteron density,
which is now described by phase space factors with temperature and volume playing a dominant role.
Large volumes reduce composites since nucleons are less likely to be near each other to combine anc
high temperatures increase break up probabilities. Binding energy terms appear as Boltzmann factors anc
enhance composite densities.

We can question whether rates are fast enough to produce equilibrium distributions. To answer this
question we consider the following simplified expression for a reactionggte: ¢ x v. Forp, we take
nuclear matter density or 06 nucleongfm?3. Typically, temperatures are 10’s of MeV for medium energy
collisions and a temperature of 10 MeV has a kinetic energy of 15 MeV/2)m (v/c)?. Forv/c =1/5,
a cross sectiors 1 fm? will have a rate 18 s~1. The reciprocal of this rate is the reaction rate time scale
which is 10%2s. Thus, a cross section of 1frwill have a reaction rate time scale that is equal to the
characteristic time scale of the collision. Under these circumstances equilibrium will be reached.

Next, consider the prototype two body reactibr- B — C + D. The rate of growth of the density of
C can be related to the chemical activity= 14 + ug — uc — pp, wherey, is the chemical potential of
A, etc. Specifically, the time evolution of the density®is

%szpB<a[A+B—>C+D]xv>(1—exp[—A/T]). (A.2)

At equilibriumuy + up = pc + 1p- Thus, the facto(l —exp—A/T1) — 0. Near equilibriumA <7 and
(1—exd—A/T]) — A/T. In this limit the reaction rate Eq. (A.2) is linear in the chemical actity
Such linear connections are known as Onsager relations where the chemical activity acts as a generalizec
force, X, and the left-hand side of Eq. (A.2) is interpreted as a generalized velbcilyenJ = LX,
whereL is the proportionality constant betwe&andX. Far from equilibrium, this linear relation is no
longer valid sincé is, in general, not small comparedTo

As a final consideration in discussing reaction rates we note that if the equilibrium concentration of
the particle of interest is small, then the reaction rate constant is somewhat more complicated than the
simplified expression used above. To illustrate this situation we mention the case of pion production. For
example, for the reactioN + N — N + N + =, the rate equation for the pion density is

d(p,)/dt = [p% — (o5 * pr/ (pr)eq] X (V) . (A.3)

Here, (p,)eq is the equilibrium pion density which depends on temperature. This rate equation can be
solved to givep, () = (py)eq* (1 — exp—4 x t]). The rate constant is

i = (ov) x p3/(Prleq - (A.4)
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The result of Eq. (A.4) differs from the simplified reaction rate used above by an important factor
pn/(pr)eq This factor can be very large when the equilibrium density of pions is small compared to
the nucleon density. It was one of the reasons why the resu[g2bfed to the conclusions that pions

would be in chemical equilibrium, a result which differed from a previous resui844. While low
equilibrium concentration can enhance reaction rate constants and reduce equilibration time scales, some
examples of other enhancement factors are the presence of two or more channels to the final state, the
presence of secondary processes, high densities which allow multiparticle production processes above the
two body type just considered. For example, the time scale for kaon production is considerably reduced
through pion induced reactions, where the pions are copiously produced in the initial nucleon—nucleon
collisions as first noted if82].

Appendix B. Antisymmetry and all that

Our whole discussion started from Eq. (2) in Section 2 which then led to Eq. (5), the recursive formula.
Eg. (2) is not guantum mechanical. The partition function;gfarticles takes this simple form only under
situations of low density and high temperature. We argue here that the approximation is quite good for
intermediate energy heavy ion collisions.

We start with qualitative arguments. The volumes used here are about three times or more of the
normal volume. At low temperaturer 4 MeV) where one might imagine the approximation to fail, it
survives because many composites appear thus there is not enough of any particular species to make
(anti)symmetrisation an important issue. At much higher temperature the number of protons and neutrons
increase but as is well-known thg correction takes the approximate partition function towards the
proper one at high temperature. In a hypothetical world, the problem could get very difficult. Such a
scenario would arise if the physics was such that at low temperature we only had neutrons and protons
and no composites. An even worse situation would be if we had only neutrons (or protons). With these
preliminaries let us proceed to estimate quantitatively the errors involved in actual cases that one might
encounter in intermediate energy heavy ion collisions.

The recursive relation, Eg. (5), is not limited to the approximation of Eq. (2). It is sho8]jrthat
by regarding the grand partition function (in our case this grand partition function incorporates correct
(anti)symmetry among particles) as the generating function of the canonical partition function one derives
a relation like Eq. (5)

N
1
On (B =7 > kuQni(P) . (B.1)
k=1
wherex; is not a one-particle partition function but is to be obtained from an expansion of the grand
partition function. We illustrate this with first the example of only protons filling up orbitaisk, . . . in
a box. Now

IN Qgr(B, ) =) In(L+ )

| = e
_ Z Z fg(ﬁu Bei) (B.2)
i



42 C.B. Das et al. / Physics Reports 406 (2005) 1—-47

The coefficient of &% is x; which then givesy, = ((—)¥"1/k)Y; e ¥4 . When this expression for

is used in Eq. (B.1) it generates the correct partition function. Orbitals are given occupancies greater
than one and then eliminated by subtraction. This can lead to severe round-off errors when applied to
degenerate Fermi systems but will not affect the application we envisage here. The number of protons is
given by

x107-1  2x207-2 ZxzQo
7 = - 7z . B.3
( 0z + 0z o 0z )/ (B.3)

The value ofQq is 1.

Anticipating generalisation we will calt; in the above casy[k] The subscript 10 means it is a
“composite” W|th one proton and no neutron. The supers&ripeans it is obtained from theh term in
the expansmny ! will contribute toxy.o.

If instead we had a boson, deuterons for example, we would have

IN[Qgr.can(B. 1ty )1 =Y —In(L — othiglin (B.4)

-y L iyt —pep) (B.5)
- — J
i

Thus in the case of deuteroy%‘]l (which would contribute tay x) is given by, (1/k)e *Fé.
We can treat an assembly of protons, neutrons, deuterons, tritons, etc. If the dissociating sy&em has
protons andN neutrons the recursive relation is

1 ,
Qzn=~ > ixijQzoin- - (B.6)

i=1,Z,j=0,N

The average number of a composite witlprotons and, neutrons is given by

(Mivis) = Yk Qz—is. N—in/ Qz.N + 2975 Q7 —2iy N—2i/ Qz.n + - (B.7)

Unless one is in an extreme degenerate fermi system, one can evaluafadtas by replacing sums
with integration. For exampl@z["] ((—)""Y/n)Y", e P where the sumis replaced lfye "¢ (c) de=

2(V/ h3)(2nm /nB)®/%. HereVis the available volume. We have included the proton spin degenenasy;

the proton mass. For the deuter@lﬁ =(1/k) [ € *Peg(s) de. Thisis 3x 23/2(V ) h3)(2rm )3/ 2€lPEb

k52 whereEy, is the binding energy of the deuteron. It is clear how to compute contributions from other
composites.

We test the accuracy of the yields as calculated throughout the main text by comparing with a calculation
in which the complete theory of symmetrisation and antisymmetrisation is used. Subject only to the
approximation that summation over discrete states has been replaced by an integration over a density of
states, the calculation is exact. The results are taken [it8nWe take the dissociating system to have
Z=25andN =25. The lowesttemperature considered is 3 MeV (one might argue that at lower temperature
a model of sequential decay is more appropriate). The highest temperature shown is 30 MeV. We take a
freeze-out volume in which the composites can move freely as three times the volume of a normal nucleus
with 50 nucleons. In addition to neutrons and protons we allow the possibility of composites. Excited
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Table B.1
Comparison of calculations of average yields &mé

Calc p n d t SHe 4He Z>12 Temp. E/A

(MeV) (MeV)
Approx 0.307 0.032 0.050 0.007 0.054 0.679 0.945 3 —7.863
Exact 0.306 0.031 0.051 0.007 0.053 0.696 0.945 3 —-7.861
Approx 1.174 0.898 1.177 0.560 0.641 2.489 0.051 6 —4.117
Exact 1.117 0.856 1.195 0.553 0.638 2573 0.050 6 —-4.135
Approx 4.127 3.955 4.812 2.099 2.052 1.985 0.000 12 4.401
Exact 3.860 3.696 4.941 2.090 2.051 2.021 0.000 12 4.308
Approx 10.937 10.893 7.664 1.686 1.650 0.379 0.000 30 28.914
Exact 10.512 10.468 7.885 1.732 1.696 0.395 0.000 30 28.844

By exact we mean a calculation with proper symmetry. Sum over discrete orbitals in a box has been replaced by integration
as is the usual practice.

states of the composites were not allowed (they could have been included but the purpose of the exercise
was to compare two models: calculations without the inclusion of excited states were sufficient to reach
conclusions). Spins and binding energies for deuteron, tritda,and*He are taken from experiments.

For higher mass composites the binding energy is taken from empirical mass formulas. For fermions, spin
% was assumed and for bosons spin 0 was assumed. FoZ eadiakeN =7 —1, Z, andZ +1. We present

in Table B.laverage yields of protons, neutrons, tritofide, “He and the sum of yields of all nuclei

with charges greater than 12. The temperature range of 3—-6 MeV is of interest to many experiments.

We also show results at 30 MeV. The approximation used in the main part of the text is seen to be
quite good.

Appendix C. Applications to other areas

While the main emphasis of this report is on the thermodynamic model for nuclear multifragmentation,
the applications of the approach developed in Section 2 to other areas will be mentioned in this appendix.
In particular, many problems in statistical mechanics can be reformulated in terms of Eqgs. (1)—(5) in that
section. Each problem has a different choice for the facthiat appears in these equations and a different
interpretation of it within the general structure of those equations. We will now illustrate these remarks
with some examples.

Let us consider the following parallel between multifragmentation and permutations, which appear
when Fermi-Dirac and Bose—Einstein statistics are included into problems with identical particles. Any
permutation can be broken up into cycle classes and this cycle class decomposition is the basis for this
parallel. A given permutation @&k particles has a specific cycle class decompaosition which specifies the
number of cycles of lengtk This number is similar to the number of clusters of sizea fragmentation.
Moreover, the same type of sum rule holds as with clusters. That s, for any given permutation, tistotal
equal to the sum of the cycle length times the number of cycles of that length in that specific permutation.
The canonical partition function for non-interacting particles such as Fermi—Dirac or Bose—Einstein
particles in a box or in a one body potential well such as a harmonic oscillator well has a form given by
Eq. (2) in Section 285-87] For identical particles in a box of volunveand a system at temperatdrghe
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o weight factor for a cycle of lengtkis that of Eq. (6) with they; = 1 in that equation for Bose—Einstein
particles andy, = (—1)**D for Fermi-Dirac particles. Once the canonical partition function is obtained
from the recurrence relation of Eq. (5), the thermodynamic free erfetgyn be calculated and all other
thermodynamic quantities also follow frofm For example, the pressure will have a form involving an
expansion in density and quantum volume which gives the quantum corrections to the ideal gas law
coming from the symmetrization or anti-symmetrization of the particles. Bose—Einstein particles in a
laser trap which is taken as a harmonic oscillator well have also been studied using this afprpach
Fermions in a well can also be studied as mentiond®T7ih and an extended discussion can be found

in [88]. Interactions can also be included along with quantum statistics as shgi].irsome further
observations regarding permutations are as follows. The result of Eq. (4) gives the mean number of cycles
of lengthi in terms of the ratio of the two partition functiods— i andA, and thew factor for that length.

Near the Bose—Einstein condensation transition long cycle lengths start to appear and this manifestation
of the transition is analogous to the appearance of large clusters around the liquid gas phase transition.
The results of Eq. (4) give the probability of a particular permutation, specified myvégtor, being
present. In RHIC collisions many pions are produced and the application of the methods in Section 2
can also be given. For example Bose—Einstein effects associated with thermal pions have been studied in
[89,90] For thermal pions at temperaturén a volumeV the cycle lengthw factor of Eq. (6) is given by

VT3 m\2 /(1 m
2 ) (5) () ke [k ] -
( 2n2 ) <T) <k2> %7
Here,mis the mass of the pion ankl; is a MacDonald function. The weight factor also appears in

expressions concerning the mean number of pions, its fluctuations, and in higher moments of the pion
probability distribution. Examples of these connections are:

(N)=)_ ko ,
(N?) = (N)2 =) " Koy,
(N = (N =" Koy . (C.1)

The sums that appear in Eq. (C.1) are ovek'allNote that Poisson statistics has only unit cycle,-etl

only inthe sums. Thetiv2) — (N)?= (N). The presence of cycles of length 2 and higher cycles produces
departures from Poisson statistics. An important observation related to Poisson statistics comes from
the fact that coherent states have associated Poisson distributions. Moreover, departures from Poissot
statistics are associated with chaotic emission processes. At high temperatures, Maxwell-Boltzmann
statistics apply which leads to Poisson statistics in statistical models. The pion probability distribution for
havingN pions is the ratio of the canonical partition function for a system of Nidévide by the grand
canonical partition function. This probability was investigate@d@] for the case of 158 GeV Pb Pb
collisions where it is shown to have a Gaussian shape with a width that is about 10% larger than a
Poisson distribution with the same mean number of pions. Many other models of pion and, in general,
particle multiplicity distributions can be developed in a similar manner by specifying another form for
wg. Oncewy is given, all quantities of interest follow. The importance of a phenomenological approach

to multiparticle distributions, which is based on known distributions from probability theory, is shown in
[91-95] Moreover, a wide range of physical processes can be accommodated using such an approach.
A specific and frequently used distribution is the negative binomial distribution whetext*/ k. The
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symbolxis the negative binomial parameter whileanother parameter thatis importantin fixing the mean
number of pions and its variancgV) =xz/(1—1) and(N?2) — (N)?=(N)(1+ ((N)/x)). The generalized
approach ir{89,90] also includes several well-known specific probability distributions as special cases
of a more general distribution. Here, we will just mention a few examples of various phenomena that can
be found in[89,90]which are as follows: (1) Emission from systems with a variable signal to noise ratio,
where the signal is related to a Poisson processes which may originate from a coherent state and a nois
level given by a negative binomial distribution. (2) Field emission from Lorentzian line shapes and its
connection to a Feynman—Wilson da6]. (3) Pion laser model®7-99]and the role of Bose—Einstein
enhancement for a Poisson emitting source. (4) Multiparticle emission as a one dimensional random walk
process along a jet axis. A reader interested in the application of the methods of Section 2 to multiparticle
multiplicity distributions can find the details and several other individual casg@®i80]. In a series of
paperg85,86] Hegyi has considered many interesting aspects of multiparticle production and has also
introduced a generalized distribution for its description.

Photon count distributions can also be developed using the approach of Section 2. In fact, early models
of pionic distributiong91] coming from nucleon—nucleon and nucleus—nucleus collisions were based on
photon count distributionf®1]. The laser distribution d@1] is an example of a distribution which first
appeared in quantum optics and was then subsequently taken over into the area of particle production.
Thermal emission of photons have ap factor that can be obtained as the zero mass limit of the pion
result given above; namely, = 2V T3/(x%k%). An additional factor of 2 appears for the spin of the
photon.
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